
SITE INSPECTION REPORT

PHELPS DODGE HISTORICAL SMELTER

U.S Highway 80 @ The Copper Queen Mine Bisbee, Arizona Cochise County

EPA ID#: AZD981680242

State ID#: 22

PREPARED BY: James D. Williams August 28,1991

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY
OFFICE OF WATER QUALITY
GROUNDWATER HYDROLOGY SECTION
SITE ASSESSMENT HYDROLOGY UNIT

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

FIFE SYMINGTON, GOVERNOR EDWARD 2. FOX, DIRECTOR

H-4942.26

September 18, 1991

Lisa Nelson (H-8-1)
U.S. Environmental Protection Agency
Region IX
75 Hawthorne Street
San Francisco, CA 94105

RE: PHELPS DODGE HISTORICAL SMELTER

Dear Lisa:

Enclosed is the Site Inspection Report for the above facility. The analytical results of the sampling conducted in October 1990 are summarized and recommendations for further action under CERCLA are included.

If you have any questions or need additional information call me at (602) 257-2134.

Sincerely,

Dan Wiliams, Hydrologist

Site Assessment Hydrology Unit

DW:hy

The Department of Environmental Quality is An Equal Opportunity Affirmative Action Employer.

TABLE OF CONTENTS

Section	<u>on</u>	<u>Page</u>
1.0 1.1 1.2	Site Description	1
2.0	Apparent Problem	3
3.0 3.1 3.2 3.2 3.3 3.4 3.5 3.6	J &	5 6 7 9 9
4.1 4.2 4.2 4.2 4.3 4.3	Previous Sampling	13 14 14 15 15 15 17
5.0	Emergency Response Considerations	20
6.0	Summary of HRS Considerations	20
7.0	ADEQ Management Review/Concurrence	23
8.0	EPA Concurrence	23
9.0	References	24

TABLE OF CONTENTS (CONT'D)

Maps:	<u>Page</u>
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5:	Site Location Map
Tables:	<u>Page</u>
Table 2: 2 Table 3: 1 Table 4: 2 Table 5: 2	Well Locations, Ownership, Construction Parameters13 Analytical Parameters For Groundwater Samples15 Field Observations
List of App	<u>cendices</u>
B) Support C) Analyt: D) Data Va E) Data Va	t Log And Reports t Documents For The DDP Blood Lead Survey ical Results Of Soil Sampling By DDP alidation Report For Soil Sampling By ADEQ alidation Report For Groundwater Sampling By ADEQ onstruction Data

SITE INSPECTION REPORT

PHELPS DODGE HISTORICAL SMELTER

1.0 Site Description

Masonry adobe furnaces (hereafter referred to as smelters) were constructed across the southwest in the late 1800's to refine oxide ores of copper, lead, arsenic, antimony and other heavy metals. Before the advent of scrubbers and other devices used to filter the exhaust from smelters, particulates of these metals were emitted into the air to settle on soil and local surface water. Most of the smelters in Arizona are now abandoned and many of the sites may only be approximated from historical documents. One such site, owned and formerly operated by the Phelps Dodge Company, is located along U.S. Highway 80 in Bisbee, Arizona (Fig. 1). The approximate geographic location of the Phelps Dodge Historical Smelter (PDHS) is the SE 1/4, SE 1/4, SW 1/4 Section 9, Township 23 South, Range 24 East [(D-23-24)9cdd]. The site consists of two abandoned smelter facilities, each located near the mouth of Brewery Gulch in Bisbee. Bordering the site to the east, west and south is Phelps Dodge property. The PD property is fenced to prevent entry into the numerous abandoned, unstable mine shafts. Figure 2 gives the locations of the mines and the former smelter sites. To the north of the site is U.S. Highway 80 and the town of Old Bisbee.

The original smelter site was located approximately 1200 feet east of the entrance to the principal mine of the area, the Copper Queen. A single 36-inch diameter furnace was used to smelt the copper ore (11)(15)(17). Within a year, another furnace was added at this location. Because the demand for copper continued to exceed the production capacity of the facility, the smelter was moved to a new site 300 feet to the east and expanded again (11)(17). The facility now included four furnaces with a production capacity of 1,000,000 pounds of copper ore per month (15). Even with the addition of a fifth furnace in 1901, the demand for the metal could not be met. In 1904, the facility was finally scrapped when a modern, high capacity smelter was completed at Douglas, Arizona (11)(17). The locations of the PDHS facility have since been razed by construction of the parking lot for the Copper Queen Mine Museum and the Holbrook extension of the Lavender Pit mine (Fig. 2) The only remaining evidence of the Bisbee smelters are small masonry structures on Bucky O'Neil Hill that were erected as foundations for smelter stacks.

1.1 Site History/Ownership

The discovery of base metal deposits in the Mule Mountains surrounding Bisbee (The Warren Mining District) was made in 1877 by a scouting party from nearby Fort Bowie. To process the

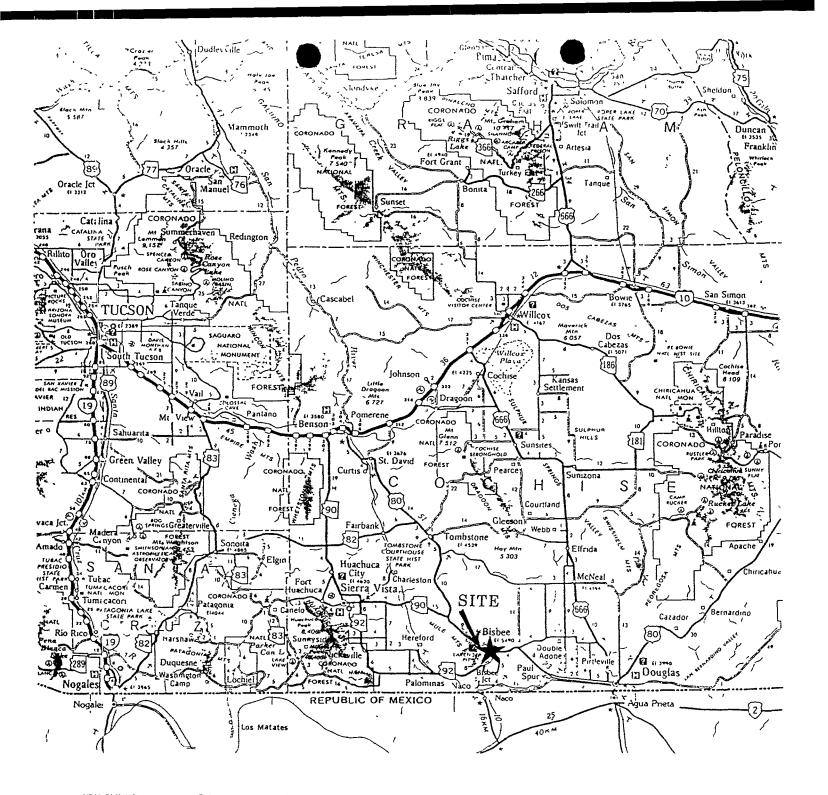
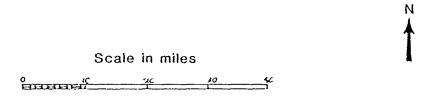



FIGURE 1 Site Location Map

Phelps Dodge Historical Smelter, Bisbee, Arizona

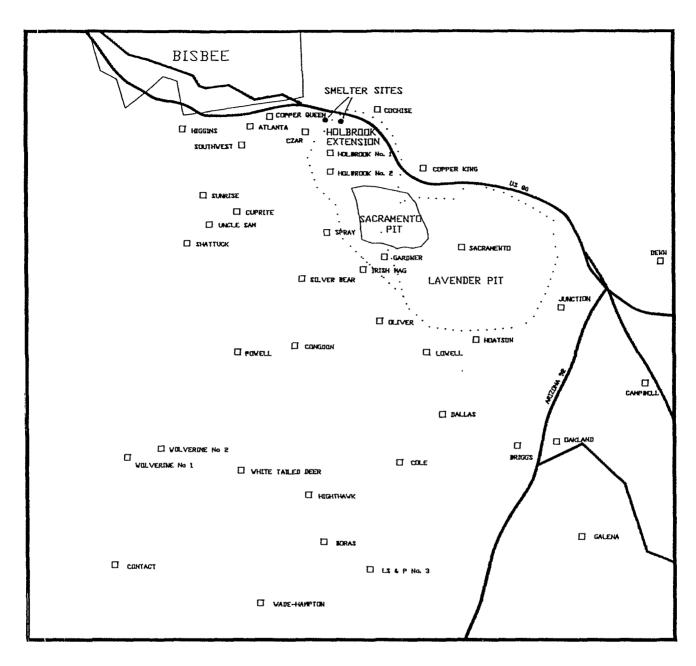
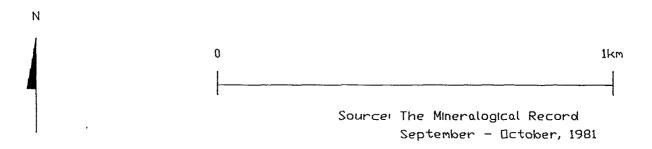



Figure 2: Location of Mines and the Historic Smelter

scattered outcrops of oxide lead ore (cerrusite), an adobe masonry furnace was constructed in April, 1878 near Castle Rock along Tombstone Canyon. These early furnaces were primitive, consisting only of a hearth, side walls, end walls and a roof. A combination of molten metal and slag was produced by heating the ore over a charcoal fire. This furnace had the capacity to produce 600 pounds of lead-silver concentrate or matte every four to six hours (11). However, production was not adequate to meet expenses and the smelter was scrapped. In the summer of 1877, several important claims of the district were filed. Among the claims was the Copper Queen which revealed, from an initial cut of only four feet by ten feet, a deposit of ore that assayed 23% copper.

In the spring of 1880, the Copper Queen mine was optioned to Mr. Edward Riley. On April 9, 1880, Mr. Riley sold half interest in the mine to the mining firm of Bisbee, Williams & Company of San Francisco. With this sale came the formation of the Copper Queen Mining Company (2). Because of the previous closure of the smelter, however, ore from the Copper Queen and other mines in the area had to be hauled to the west coast and shipped to Wales for processing. To eliminate these high transportation costs, a water-cooled (jacketed) furnace designed specifically to reduce the high-grade oxide and siliceous copper ores was erected within 1200 feet of the entrance to the Copper Queen. Furnaces of this type were being mass produced in various sizes by the Pacific Iron Works of San Francisco under the trade name of Rankin and Brayton (17). The 36-inch diameter furnace had the capacity to smelt 30 tons of ore per day (11). By September, 1880, a 180-pound pig of 94-96% copper was being produced every 15 minutes. With the addition of another Rankin and Brayton furnace in late 1880, production was averaging about 20,000 pounds of copper per day (17).

In June 1881, D.W. James and W.E.Dodge, the principals of Phelps, Dodge & Company (PDC), retained Dr. James Douglas to examine a claim adjacent to the Copper Queen for possible purchase. The purchase was made which marked the entry of PDC into the mining business as the Atlanta Mining Company. In August of 1885, a merger of the Atlanta Company and the Copper Queen Company was favorable to PDC which operated the mines under the name of The Copper Queen Consolidated Mining Company (CQCMC) (11)(17). The smelting facility, its production capacity taxed by the ever increasing amount of ore to be refined, was now under the ownership of PDC. Dr. Douglas, still under contract from CQCMC, advised that the smelter be updated to cut costs and handle an even greater volume of ore. A larger, more economical smelter was erected about 300 feet east of the original Copper Queen smelter site. In May, 1887, four 36-inch diameter water-jacketed furnaces were put into operation. With the new smelting facility, production was escalated to 5,000 to 6,000 tons of copper bullion annually (17).

The smelter was refurbished by the CQCMC in 1894 because the direct smelting procedure was no longer effective. As the easily smelted oxide ores were mined out, ores higher in sulfide content, and thus more difficult to refine, became the target of exploration activity. Due to the increase in sulfide content of the ore, the purity of the smelted copper was diminished and the selling price was jeopardized (11). A new process was developed which required the addition of fluxing agents to the crushed ore to promote melting. When the mixture was smelted, slag and a mixture of copper, iron and sulfur known as matte was produced. The matte was separated and introduced to a second furnace or converter where the iron and sulfur were removed.

The new smelting plant, located at the present site of the northeast extension of the Lavender Pit mine, (See Fig. 2) consisted of four oval shaped water-jacketed furnaces. These furnaces measured 42 inches by 120 inches. Two tilting wells, arranged in tandem for each furnace, conveyed molten matte to the converters (11). The daily average capacity of a furnace was about 160 tons. A single converter could reduce 30 to 40 tons of 45% copper matte to "blister copper" (metallic copper which is 99.5% pure) (11). In an unsuccessful attempt to meet the insatiable demand for copper, the facility was enlarged again in 1901 to include 5 furnaces. Finally, a shortage of water, cramped space and the lack of a railroad combined to force the relocation of the Copper Queen smelter. The new smelter was completed at Douglas, Arizona on March 9, 1904. After 24 years of operation, the Bisbee smelter was closed on July 24, 1904 (2)(11)(17).

1.2 Other Regulatory Involvement

The PDHS site has no RCRA status nor has it been considered for further action under the State Water Quality Assurance Revolving Fund (WQARF) program or other State programs.

Since the smelter no longer exists, there are no outstanding permits for the facility.

2.0 Apparent Problem

In 1975, the Division of Disease Prevention (DDP) of the Arizona Department of Health Services (ADHS) conducted a survey of heavy metal absorption in children that reside in "smelter towns" in Arizona as part of a nationwide study by the Center for Disease Control (CDC) (14). The survey indicated that children that live in areas exposed to copper smelter emissions may have higher concentrations of blood lead than children who live in towns with no smelters. Elevated levels of blood lead are those that exceed 25 ug lead/100 ml whole blood (23). It was determined by the CDC that inhalation or ingestion of metal particulates emitted by the smelters could have, in part, accounted for the increased lead absorption (14).

The DDP study was expanded to Bisbee in October and November of 1985. Results of the study indicated that of 115 blood samples drawn, four children from the Bisbee area had elevated blood lead concentrations (43.8, 33.0, 29.6 and 26.0 ug/100 ml) (23). It was later learned, however, that two of the children had recently lived in Morenci, Arizona (also a smelter town) and one of the children had been chewing on a crib which was painted with lead-based paint. No information was available on the fourth child (23). Based on the findings of this study, it was determined that there was insufficient evidence to conclude that the blood lead levels in the children of Bisbee are related to the distance of residency from a smelter site (23).

A follow-up study was conducted by the DDP in 1986. It was observed that the houses of each of the four Bisbee children showed evidence of old, peeling paint. Upon questioning the parents of the children, it was learned that each child had been observed chewing on paint chips. Samples of paint chips and surface soil from each dwelling were collected and analyzed for lead (23). The lead content of the paint chips ranged from 968 to 34,157 ug/g and the soil lead level ranged from a low of 335 ug/g to a high of 729 ug/g (23). Appendix B contains ADHS internal memos, analytical analyses of paint chips and soil samples, and other support documentation of the DDP blood lead studies in Bisbee.

Also as part of the study, soil samples were collected from Old Bisbee and the surrounding communities in 1986. From a total of 75 soil samples, lead was detected from a maximum concentration of 1648 ug/g to less than 50 ug/g with a median concentration of 216 ug/g. The Health Based Guidance Level (HBGL) for lead in soil is 400 ug/g (18). Only 4 samples were reported as having lead concentrations of less than 50 ug/g. Appendix C gives the analytical results of the 1986 soil sampling by the DDP.

Although lead soil concentrations above the HBGL were reported, sampling locations were not precisely documented. The DDP concluded that the high concentrations of lead in the soils from Old Bisbee could be attributed to smelting activities conducted from 1878 to 1904 or to peeled lead-based paint from abandoned structures (23).— book rel.

Smelter emissions from the PDHS site may have contributed to the soil lead content of Bisbee, however, other smelters may be responsible for localized "hot spots" of soil lead contamination within the town. According to historical records, a primitive adobe smelter was constructed to smelt lead ore near the Castle Rock Spring in 1878 (2)(6). The smelter was used for about two years and then scrapped, but contamination detected in the soil in the immediate area may be attributable to this smelting activity and not releases from the PDHS site. Refer to Section 4.4.1 for a discussion of the soil analyses.

In the absence of analytical data, there is no documented release to the groundwater beneath Bisbee or to surface water. Also, there is no documented release to the air. However, since the soil contains concentrations of lead above the HBGL, a systematic sampling effort as part of a Site Investigation (SI) under CERCLA was warranted. The SI was conducted to: a) confirm soil contamination by lead, and b) determine if groundwater quality has been adversely affected by heavy metals.

3.0 HRS Factors

3.1 Waste Type/Quantity

Hazardous wastes generated by the PDHS consist of metal particulates which were released to the air during the smelting process. The fallout of these metal particulates has resulted in elevated concentrations of heavy metals, notably lead, in the topsoil surrounding the site. The waste quantity is difficult to ascertain since the smelter emissions are undocumented and originated from several smelters of different capacities over a span of 25 years. Also, the total quantity and metal content of the ore processed varied from day to day. To estimate a general total waste quantity generated by the PDHS, determinations should be made for: the amount of ore processed in tons from 1880 to 1904, weight percent of metals in the ore, and the efficiency of the smelting process.

The smelters ran almost continuously from about 1878 to 1904 except when the mines closed for nearly a year in 1886-87 due to low copper prices. From 1880 to 1886, the total capacity of two 36-inch smelters exceeded 500,000 pounds of copper per month. During the shutdown of 1886, an enlarged smelter was built that had the capacity to produce 1,000,000 pounds of copper ingots per month. In 1894, the smelter was expanded again and modified to process ore containing increasing amounts of sulfides. By 1899, the smelter was producing more than 3,000,000 pounds of copper per month. Copper, however, has not been detected in the soil in concentrations that exceed the HBGL of 26,000 mg/kg.

Another method of estimating waste quantity may be to correct the total metal production to metal recovery efficiency in the smelting process. Metal production through 1975 has been reported as: 7.7 billion pounds of copper, 335 million pounds of zinc, 324 million pounds of lead, 100 million ounces of silver and 2.7 million ounces of gold (2). Of the total lead production, about 105 million pounds has been produced since the end of World War II. This calculates to about 219 million pounds of lead produced for the years 1878 to 1945. Assuming that lead production remained consistent for 66 years (except for the hiatus in 1886-87), 3.3 million pounds of lead were produced each year until 1945. Therefore, a total of approximately 82.5 million pounds of lead was produced by smelting in Bisbee (1878 to 1904). If the smelting process was efficient to 99.0 percent

(which was unlikely in the early days of primitive adobe and water-jacketed furnaces) the quantity of lead particulates emitted into the air would be roughly 825,000 pounds or 412.5 tons. This quantity represents a minimum case because the assumed efficiency of the smelting process is probably overestimated.

3.2 Groundwater

3.2.1 Geology

The local geology has been thoroughly studied because of the voluminous mineral deposits. The producing area, also known as the Warren Mining District, comprises a zone of about 3 by 2 miles in the foothills of the Mule Mountains. Over 30 separate mine shafts were sunk resulting in a total of approximately 2000 miles of underground workings (2). Hundreds of millions of tons of ore has been removed from these underground working and 2 open pit mines. Copper is still being produced by leaching of the pits and mine dumps. Underground activity ceased in 1975.

Mining activity began in Bisbee in 1877 following the discovery of a small outcrop of cerussite (PbCO₃) in Tombstone Canyon. Since that time to mid-1975, cerussite and many other lead minerals of both hypogene (primary) and supergene (secondary) origin have been mined at Bisbee. Although the District has become best known for production of copper, 324 million pounds of lead has also been produced from the mines.

During the early years, the ore (copper) was not processed locally but was carried overland to the west coast and shipped to Wales for smelting. In 1880, in an effort to reduce overhead costs from shipping, a smelter was erected in Bisbee. The ores mined from the 1880's until 1904 were processed exclusively at smelters located at or near the entrance to the Copper Queen Mine (14). Present contamination of soils by lead is probably attributable in part to 24 years of releases to the air of metal particulates during smelting activities. However, the town of Bisbee is situated on thin, residual soils or exposures of the PreCambrian Pinal Schist (1.7 Ga) and Granite of Jurassic age (177 Ma) which may be locally mineralized (2)(3). Previous sampling results indicate that background concentrations of lead and other heavy metals may be high in areas where soils are derived from eroded bedrock containing these mineralized pockets.

The Mule Mountains are divided into 2 geologic tracts by the Dividend fault which runs parallel to U.S. Highway and up Tombstone Canyon. The fault is downthrown to the south and displacement ranges from approximately 2000 feet at the "Old Glory Hole" to about 5000 feet 2 1/2 miles to the east (3). To the southwest of the canyon exposures are mainly Paleozoic rocks with scattered windows to the Pinal Schist. The Paleozoic

sediments and their periods of deposition, in ascending order, are the: Bolsa Quartzite (Cambrian), Abrigo Limestone (Cambrian), Martin Limestone (Devonian), Escabrosa Limestone (Mississippian), and Naco Limestone (Pennsylvanian-Permian). The Paleozoic beds south of Bisbee demonstrate a gentle to moderate dip to the southeast away from a dome structure formed by the intrusion of the Juniper Flat Granite (177 Ma). The Abrigo, Martin and Escabrosa Limestones are the main ore-producing formations in the district (3).

Approximately 2 miles east of the Granite is the Sacramento Quartz Porphyry stock (180 Ma) from which the mineralizing fluids originated. Geologic mapping suggests that the stock is an intrusive complex rather than a single intrusive body (3). Prior to the surge of copper-bearing hydrothermal solutions, the limestone formations in contact with the porphyry were fractured or brecciated. Replacement of limestone occurred as the fluids migrated into the fractures and precipitated as oxide ore minerals. Malachite, azurite, native copper and cuprite occur in the Bisbee district as oxide ore minerals. At depth, there is an abrupt transition from oxide ore to hypogene sulfide minerals such as chalcopyrite, galena, chalcocite, bornite and sphalerite.

Northeast of the fault, the rocks are predominantly Cretaceous in age. These rocks comprise a predominantly clastic sedimentary package that consists of the Glance Conglomerate, the Morita sands and shales, the Mural Limestone and the Cintura sands and shales.

North of the Dividend Fault, the Paleozoic section has been removed by erosion and the Pinal Schist is exposed in outcrop. Fractures in the schist have been determined by the USGS and the ADWR to be the source of groundwater in Bisbee. The rock is a fine-grained, fissile, quartz-sericite schist, and probably represents metamorphosed sediments. Neither the top nor the base of the unit has been found, therefore, the thickness beneath Bisbee is unknown.

A detailed soil survey of the Bisbee area is not available. Generally, the soil found in the Mule Mountains, including Bisbee, is the Lithic Haplustolls-Lithic Argiustolls-Rock Outcrop Association (24). These soils are described as shallow, gravelly and cobbly, moderately coarse to moderately fine-textured, gently sloping to very steep soils and rock outcrop on hills and mountains (24). Qualitatively, the soils have a very low water capacity and a low to moderately permeability (24).

3.2.2 Hydrology

Extensive Laramide and Basin & Range faulting of the Bisbee area has complicated the local hydrogeology. As mentioned, the basin

fill aquifer is a separate groundwater system from the fractured, crystalline aquifer that supplies the wells at Bisbee. According to the USGS, the groundwater flow of the Bisbee area is diverted along a divide that is generally contiguous with the Dividend Fault zone (3). The fault zone runs south of Bisbee along U.S. Highway 80 from Lincoln School to Saginaw, Arizona where it is lost beneath the alluvium. Although the aquifers are considered to be separate, the permeability to groundwater flow across the fault has not been determined. It appears likely that the aquifers could be interconnected by a series of fractures which exist in the crystalline rocks adjacent to the fault zone or leakage across the fault. A potential recharge area to the basin fill aquifer is coincident with the fault zone and the foothills of the Mule Mountains to the south.

The town of Old Bisbee is located to the north of the basin-fill aquifer in the Pinal Schist. This metamorphic unit is exposed due to uplift along the Dividend Fault and subsequent removal of the overlying Paleozoic sediments by erosion. Near the fault, the rock is fractured and according to the USGS and the Arizona Department of Water Resources (ADWR), wells in Bisbee yield between 5 and 35 gallons/minute from these fractures (4)(5). An exception, the Castle Rock well, is a spring located south of the dividend fault which produces water from a faulted sliver of Martin Limestone.

The direction of groundwater flow in the vicinity of Bisbee has not been documented. The geometry of the fracture system in the schist will likely influence the groundwater flow direction but the overall effects are not known. In the basin-fill aquifer to the south, the groundwater moves generally in the same direction as surface runoff which is to the south and southwest (4). The subsurface flow ultimately moves into a cone of depression at the Naco well field.

Since the Bisbee area obtains drinking water only from groundwater, the basin-fill aquifer to the south (including the well field at Naco, Arizona which supplies Bisbee) has been designated a Sole Source Aquifer under Section 1424(e) of the Safe Drinking Water Act (SDWA) of 1974. This program authorizes the U.S. Environmental Protection Agency (EPA) to review Federal financially-assisted projects planned for the area to determine their potential to contaminate the aquifer. If potential contamination exists, the EPA may terminate the commitment of federal funds to the project. It is not known if the bedrock aquifer that underlies Bisbee is hydraulically connected to the basin-fill aquifer.

Approximately 6500 acre-ft of groundwater was pumped from the basin-fill aquifer for irrigation, public supply, mining, domestic and stock purposes in 1985 (13). Of this total, 3600 to 4200 acre-ft was used for agriculture based on an estimated consumptive use by alfalfa of about 3.0 to 3.5 ft/acre/year (13).

According to the ADWR, there is one well to the south of the Smelter site within a three mile radius, however, it is located in the basin fill aquifer. Most of the local wells are to the north of PDHS in Bisbee. The nearest public drinking water wells are in the Bisbee Well Field which is located approximately 9 miles to the south near Naco, Arizona. Although these wells supply most of the drinking water to Bisbee, some of the domestic wells in upper Tombstone Canyon may be used for drinking water. The nearest domestic well is located at the Castle Rock Inn approximately 2000 feet from the PDHS site.

It is not known how many residents of Bisbee obtain drinking water from their wells. It was confirmed by ADEQ that 2 of the wells sampled were used for drinking water purposes. Assuming 3 people served per domestic well, a speculative target population for groundwater is less than 50 people.

Within the city of Bisbee, depth to groundwater averages about 40 feet (4)(13). Depth to groundwater beneath PDHS is not known.

The average annual rainfall for Bisbee is 17.34 inches (12). The mean annual lake evaporation of the area is approximately 66 inches (25). The calculated net annual rainfall is -48.66 inches.

3.3 Surface Water

There is no perennial surface water within three miles of the smelter site and there is no documented usage of surface water for drinking purposes, therefore, the population served is zero. Bisbee is located in the Mule Mountains and the area is heavily dissected by erosion; slopes range from 2% to >50%. Streams in the area are ephemeral and flow only during periods of high rainfall. As the population of Bisbee grew in the late 1800's, the canyons became lined with homes and businesses. With the increased population came an increased need for wood to fuel the fires of industry and home. The removal of trees from the canyons and hills surrounding Bisbee invited flooding during the often heavy rainstorms of July and August. Several times in its early history, Bisbee was destroyed by flooding. After a severe flood in 1908, a concrete-lined drainage ditch was built along Tombstone Canyon to channel the floodwaters.

The 2 year 24-hour rainfall average for Bisbee is estimated to be 2.14 inches (25).

3.4 <u>Air</u>

A release of hazardous compounds to the air has not been documented. However, contaminated soil surrounding the PDHS site indicates that airborne metal particulates may have been emitted from the smelter. The target population for the air route is the

number of people presently living within a four-mile radius of the smelter site. The present population is used since the concern is not with the original smelter emissions but with the potential of a release of metal particulates to the air from contaminated soil. An exact population figure is unavailable but an estimate is possible by assimilating several data sources. This estimate would include individuals residing in the towns of Bisbee, Warren, Saginaw, Galena, South Bisbee, Don Luis, Lowell, Huachuca Terrace, Briggs, and Tintown. According to the 1987 edition of "Arizona Statistical Review" published by the Valley National Bank of Arizona, the population of Bisbee is about 8060 people but it is not known if this figure includes the aforementioned surrounding communities. The EPA, Region IX, has reported that the current population of Bisbee is about 5300 (4). They also estimate the current population of the Bisbee-Naco area (approximately 72 square miles) at 14,574 based on information obtained from the towns of Bisbee and Naco, Arizona. Excluding the town of Naco from the estimate, the target population for the air route is approximately 11,000 people.

3.5 On-Site Pathway

The risk of direct exposure to the general public is low at the PDHS site because the area likely to be most contaminated by metal particulates is fenced and access is restricted. Contamination of the soil by lead has also been documented, however, outside of the fenced area (i.e. the residential and commercial areas of Bisbee). There is a potential for inhalation of metal particulates in these areas resulting from agitation of the contaminated soil. Since the Bisbee area is projected to triple its current population by the year 2000 (4), there should be some concern about the dispersal of dust containing lead as a result of future development. Lead contaminated dust kicked up during the construction of new roads, houses and other projects would pose a health hazard to area residents. Also, a projected increase in mining activity and consequent renewed traffic on private, unpaved roads would cause the release of lead particulates to the air.

There is also a potential exposure of children to lead by ingestion of soil, especially in areas such as schoolyards and playgrounds. Additional work may be necessary to determine the degree of contamination in areas frequented by children.

3.6 Proposed Revised HRS Considerations

A Preliminary Assessment (PA) was prepared for the PDHS facility by the ADHS in October, 1986. Groundwater, air and additional soil sampling in Bisbee was recommended. The PA was the subject of two separate evaluations by ICF Technology Inc. dated December 23, 1987 and January 19, 1988. Their review comments were forwarded to the EPA, Region IX. ICF Technology, Inc. recommended no further action under CERCLA in the memo of December, 1987 and the EPA concurred (23). The recommendation was based on a low target population for groundwater, the lack of uses for surface water and the inability to evaluate a site based on soil conditions under the current Hazard Ranking System (HRS). With the proposed addition of the on-site exposure pathway in the revised HRS, however, PDHS may qualify for additional investigation under CERCLA. Also, the new HRS expands the exposure pathway for the air route to include the potential of a release of contaminants to the air from soil. Concentrations of lead above the HBGL have been documented in the soil at Bisbee. Because of potential adverse environmental impact and the revised eligibility of the site for further action under CERCLA, an SI was conducted by ADEQ.

The current HRS model allows a maximum assigned value for groundwater use if wells are used for drinking water and "no municipal water from alternate unthreatened sources are presently available". The Bisbee Well Field, which currently supplies more than 95% of the drinking water for the Bisbee-Naco area, is located in an alluvial basin fill aquifer approximately miles south of Bisbee. Since the aquifer is the primary source of drinking water for the area, it has been designated a Sole-Source Aquifer pursuant to Section 1424(e) of the SDWA of 1974 (4). Without an alternate source of drinking water, contamination of the basin fill would represent a hazard to public health.

The crystalline bedrock aquifer from which Bisbee residents draw water may be hydraulically interconnected by fractures and faults with the basin fill (20). If the aquifers are interconnected, any contamination present in the fractures could move downgradient a considerable distance and recharge the basin fill. In the current HRS multiple or interconnected aquifers are considered one aquifer if they function as a single hydrologic unit within a three-mile radius from the extent of known contamination. In the revised HRS, additional consideration may be given to interconnected aquifers in the evaluation of a site, especially if contamination attributable to the site extends beyond the proposed two-mile radius (26).

Also, if the fractured basement acts as a recharge zone to the basin fill aquifer, it is included in the Sole Source Aquifer designation subject to the provisions of Section 1424(e) of the SDWA. A regional geohydrologic study prepared by the USGS to evaluate the Sole Source Aquifer petition indicates that there is a potential for groundwater contamination of the basin fill aquifer from upgradient copper leaching operations and sewage treatment facilities (20). If contamination of the basin fill aquifer were to occur, an alternative source of drinking water may be the wells in Old Bisbee. In this round of sampling, no contaminants were detected in any of these wells that exceeded Federal MCLs concentrations or that confirmed a release.

The revised HRS model will also take into account the potential for direct human contact to a contaminant on-site (26) (See Section 3.6). The EPA considers soil ingestion as the most significant contact threat. Two population groups, the resident population and the nearby population (those people who have access to the site but do not reside, attend school or day care on the site) are evaluated for the likelihood of exposure (26). The resident population group consists of those people who live or attend school or day care on-site. Since the soil in Old Bisbee contains lead in concentrations above background and the HBGL, the PDHS site boundaries are expanded to include the town of Bisbee. Under the resident population group, children under seven are considered a high risk subgroup because they are most likely to ingest soil than other people. In addition to those living on-site, i.e. within the town of Bisbee, children counted in the high risk group includes attendees of school or day care on-site. Therefore, the on-site exposure pathway must be considered in evaluating the PDHS site.

There are no Federal or State endangered species habitats, wetlands or wildlife sanctuaries within a three mile radius of the PDHS site. Also, the facility does not pose an actual or potential threat to sensitive environments or the food chain.

4.0 <u>Summary of Investigative Efforts</u>

To locate sampling points for soil and groundwater grab samples, a reconnaissance visit to Bisbee was conducted by the author on September 16, 1988. Mr. Arnold Nanez of the Cochise County Health Department provided assistance in locating wells. During that survey, 6 wells and 8 soil locations were selected for sampling. Soil sampling points were chosen to correlate with the described locations of previously reported soil lead detections by DDP personnel. The sites were also selected based on the assumption that the soil had been undisturbed since the time of smelter operations. The number of soil samples was later upgraded to 22 at the request of the EPA, Region IX. All sampling locations were located within 1 1/2 miles of the smelter site. The wells were all within the confines of Old Bisbee.

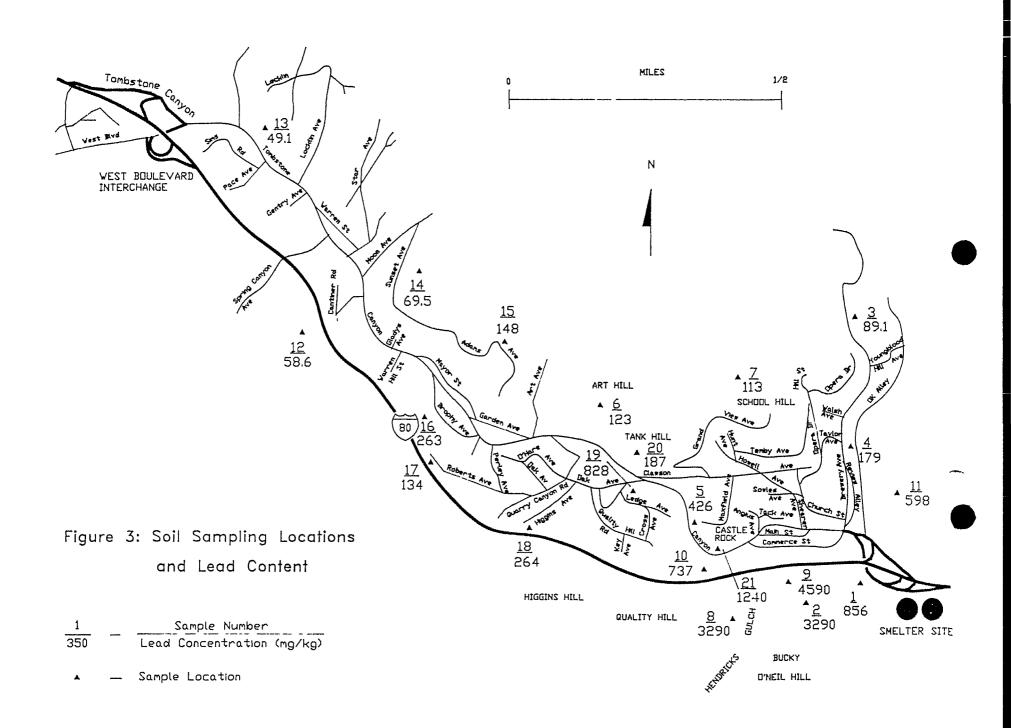
For the groundwater samples, all wells in the town of Old Bisbee that could be located were proposed for sampling. One well [M. Peeler; (D-23-24)8bba], however, was eliminated by the EPA when it was determined that the well may have been contaminated by a gasoline spill which occurred in the late 1970's. Another proposed well [R. McGinnis; (D-23-24)8bbb] was not sampled because the submersible pump was inoperable when the ADEQ sampling team arrived at the wellsite. A well owned by Ms. Lilian Saner [(D-23-24)7aba] was substituted for the McGinnis well.

The groundwater samples were collected on October 5-6, and October 10, 1989. See Table 1 for locations, ownership and construction parameters of wells that were sampled by ADEQ. In

accordance with the Federal Preliminary Assessment/Site Investigation (PA/SI) Program, the samples were analyzed by the EPA, Region IX laboratory in Las Vegas, Nevada. The samples were tested for Volatile Organic Compounds (VOCs) and dissolved metals.

Table 1: Well Locations, Ownership and Construction Parameters

Well No.	<u>Owner</u>	Casing <u>Diameter</u>	Screened <u>Interval</u>	Total <u>Depth</u>	<u>Use</u> 1	Pump ²
(D-23-24) 9ccb (D-23-24) 8bda	Castle Rock Inn M. Edwards	UC 24	 35-48	65 50	U H,I	N Y
(D-23-24)8bda (D-23-24)8bab1	City of Bisbee	6	unknown	250	U U	Y
(D-23-24)8bab2	G. Wright	14	unknown	100	Н	Y
(D-23-24)7aba	L. Saner	UC		40	H	Y
(D-23-24)7abb	B. Kimberlin	6	unknown	150	H	Y


- Use of well is designated by the symbols:
 - H = Domestic, private well
 - I = Irrigation
 - U = Unused
- Pumps are either of the dedicated, submersible type or vertical turbine.

The soil samples were collected on October 10-11, 1989 and analyzed by the EPA, Region IX lab. Although the analyte of interest was lead, the soils were also tested for other heavy metals and for VOCs. The sample locations were selected randomly in the field in order to collect soil that presumably had been undisturbed since the closure of the smelter. Also, steep slopes and rocky terrain discouraged a systematic sampling grid. The random sampling method of undisturbed soil was used to establish a concentration gradient of contaminants in the soil relative to the historical smelter site. For this reason, areas such as lawns, schoolyards, traffic medians and other areas which may have been graded or covered by borrow soil were omitted.

4.1 Objectives of Sampling

4.1.1 Soils

To assess soil conditions and potential risk to human health and the environment, soil samples were collected from 22 locations (Figure 3). The primary objectives of soil sampling were to:

1) Provide confirmatory data as well as Quality Assurance/ Quality Control (QA/QC) for the previous soil sampling results.

- 2) Collect sufficient representative data to establish a concentration gradient for soil contaminants, i.e. lead, arsenic and other heavy metals.
- 3) Correlate, if possible, the concentration gradient to historical emissions of metal particulates from the PD smelter.
- 4) Assess the need for further action under CERCLA or a State lead program based on the extent and severity of soil contamination.

4.1.2 Groundwater

Drinking water in Bisbee is provided by the Arizona Water Company from a well field located nine miles to the south near Naco, Arizona. Although the groundwater beneath Bisbee is not currently used for drinking purposes, there is concern that high lead and arsenic concentrations could render the water undesirable for future use. Assessment of the groundwater quality in addition to soil conditions is necessary to justify future actions under CERCLA. The main objectives of the groundwater sampling program were:

- 1) Collect data which will assist EPA in scoring the site under the HRS protocols for possible additional investigation under CERCLA.
- 2) Characterize the local groundwater quality by sampling domestic wells and a municipal well owned by the City of Bisbee.
- 3) Establish a vertical migration pathway for heavy metals by correlating the type and severity of groundwater contamination to soil contamination.

4.2 Previous Sampling

4.2.1 Soil Sampling

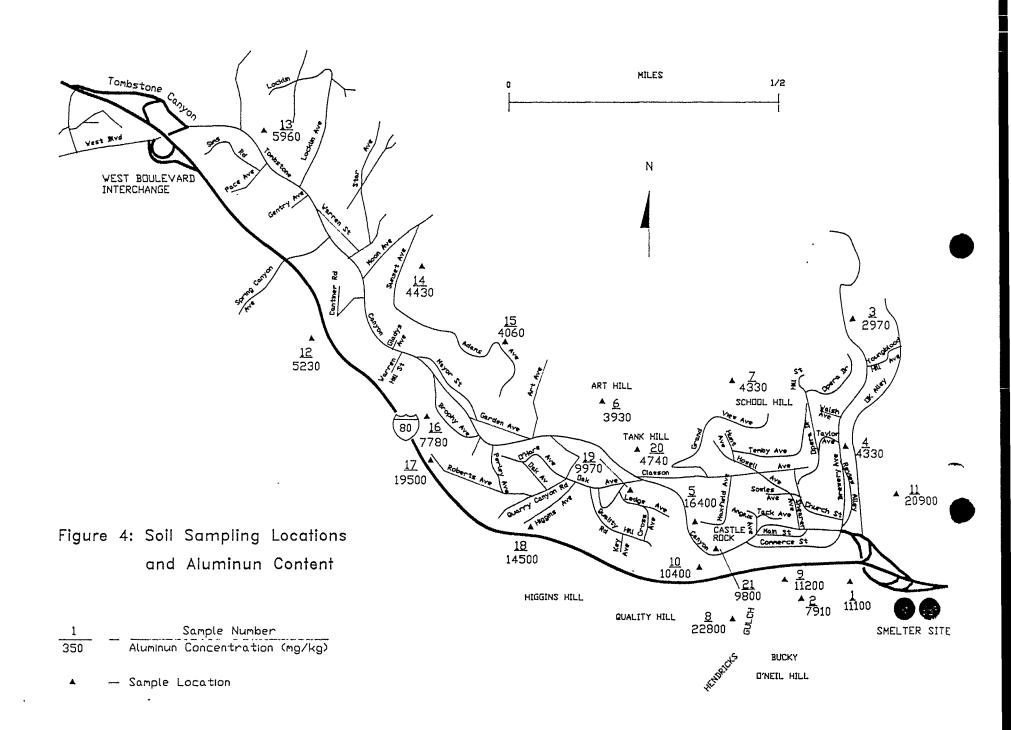
Lead has been detected in soils from Bisbee and surrounding communities in samples collected by the ADHS in 1986. A total of 75 soil samples were collected which contained lead at concentrations of 1648 ug/g to less than 50 ug/g with a median value of 216 ug/g. Only 4 samples were reported as having lead concentrations of less than 50 ug/g. (See Appendix C) High concentrations of lead in the soils from Old Bisbee has been attributed to smelting activities conducted from 1878 to 1904 or to peeled lead-based paint from abandoned structures (23).

4.2.2 Groundwater Sampling

No previous analyses of the domestic wells of Bisbee were available. The City of Bisbee, however, did provide some analytical results of sampling from their fire training well [(D-23-24)8babl]. The well has been tested for total metals but not for VOCs by the City. Total metal concentrations above Federal or State MCLs from this well have not been documented. Because of the lack of analytical data, aquifer conditions beneath the town of Bisbee were not determined.

4.3 <u>Current Sampling Activities</u>

4.3.1 Soil Sampling


Approximately 9 ounces of soil was collected at each of 22 locations using a clean metal trowel. Following the collection of each sample, the trowels were decontaminated with detergent and deionized water. The samples were contained in 9-oz wide mouth glass jars, labeled, and kept on ice at 4° C. Chain-of-custody and handling procedures were followed as specified in the approved sampling plan. Locations of soil samples collected by ADEQ are given in Figures 3 and 4.

4.3.2 Groundwater Sampling

At each well, the ADEQ sampling team collected samples in the appropriate bottles for each chemical parameter. For the VOA parameter, 80 ml of sample is required by the CLP laboratory. These samples were collected in 2 x 40 ml glass vials. All VOA samples were submitted for analysis with zero head space (e.g. no air bubbles). Samples for dissolved metals were collected and preserved in 3 x 1 liter polyethylene bottles. The required bottle types, collection methods, chain-of-custody, preservation, handling and shipping procedures were employed as specified in an EPA approved sampling plan. As indicated in the plan, field and equipment blanks were collected for each analytical parameter. A laboratory QA/QC sample and a duplicate sample were also collected. Table 2 lists the tested chemical parameters and EPA approved method numbers.

Table 2: Analytical Parameters for Groundwater Samples.

RAS Parameters	<u>Method</u>	<u>Laboratory</u>
Dissolved Metals and Major Cations Semi-Volatile Organics	625	CLP ADHS
RAS + SAS Parameters	<u>Method</u>	Laboratory
Volatile Organics	524	CLP

Where possible, the wells were purged by a dedicated submersible pump of approximately three borehole volumes of water. During the purging process, measurements of pH, conductivity and temperature were recorded. When these parameters had stabilized to within less than a 5% fluctuation, groundwater samples were collected. The samples that were collected for metals analyses were filtered in the field with a peristaltic geopump through a 0.45-um filter. Most samples were collected from a tap located on a discharge pipe near the wellhead or by a bailer. Table 3 gives measurements of pH, temperature and specific conductance taken in the field.

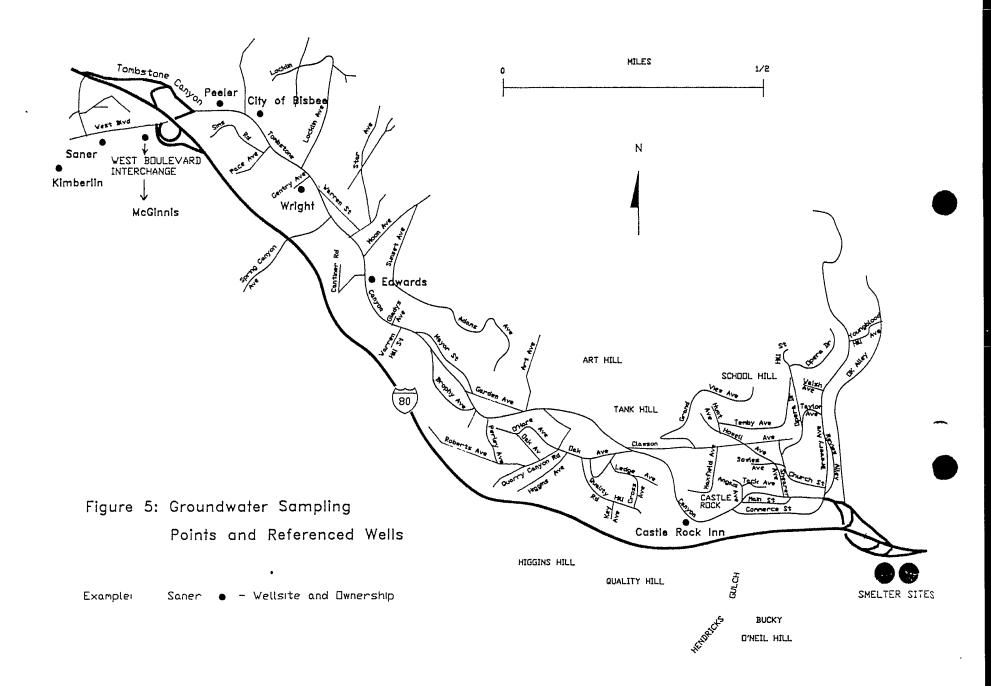
TABLE 3: Field Observations

WELL	TEMPERATURE (CO)	Нq	CONDUCTIVITY (umhos)
City of Bisbee		7.32	
Saner	16.6	6.61	402
Kimberlin	16.8	7.53	419
Edwards	18.2	7.33	525
Wright	17.5	7.21	550
Castle Rock	19.0	7.62	800

A total of 10 samples, including a laboratory QC sample, a replicate and two blanks were collected from 6 wells near the historical smelter site. For well locations relative to the site, see Figure 5. A summary of known construction data and current ownership of the wells sampled is given in Table 1.

Prior to this sampling effort, groundwater quality with respect to VOCs and metals has not been evaluated in the Old Bisbee area. The six wells in Tombstone Canyon were chosen for sampling because they were most likely to contain contaminants introduced by the smelting process. Additional factors used in selecting these wells for sampling were:

- 1. Proximity to the smelter site
- 2. Known construction parameters
- 3. The presence of a dedicated submersible pump and
- 4. Ease of access.


Listed below are the wells that were sampled, well owners or operators, and the rationale for their selection.

1) (D-23-24)9ccb, Inn at Castle Rock

This well is privately owned by the Inn at Castle Rock and is within 2000 feet of the former smelter site. The well is hand-dug and uncased. Since the well is not equipped with a submersible pump, it was sampled with a bailer. The well was not purged prior to sampling. Access to the site is not restricted.

2) (D-23-24)8bda, A. Edwards

Located 1 mile to the northwest of the former smelter site,

this domestic well was chosen for sampling based on: proximity to the site, known construction parameters, an installed submersible pump, and ease of access. The water is used primarily for lawn irrigation and washing automobiles.

- 3) (D-23-24)8bab1, City of Bisbee
 This well is owned by the City of Bisbee and is used for fire
 training. A former use was to fill the city swimming pools.
 Construction parameters are known and the well is equipped with
 an external turbine pump. The wellsite is located about 1 1/3
 miles northwest of the former smelter and is easily accessible.
- 4) (D-23-24)bab2, G. Wright
 This domestic well was chosen for sampling based on the
 presence of a submersible pump, known construction parameters,
 proximity to the smelter site and ease of access to the
 wellhead. The well is used primarily for lawn irrigation but
 may have once provided drinking water.
- 5) (D-23-24)7aba, L. Saner
 This well was substituted for the McGinnis well which was inoperable. The owner of the well uses the water for drinking and lawn irrigation. The well is equipped with a submersible pump.
- 6) (D-23-24)7abb, B. Kimberlin
 This domestic well was chosen to represent background, ambient groundwater conditions. It is equipped with a submersible pump and is easily accessible. The residents use the water for drinking purposes and lawn irrigation. Construction data for the well was provided by Ms. Saner who owns the property.

The dissolved metals analysis was selected instead of total metals to more closely define actual groundwater conditions in terms of metal concentrations. This procedure is necessary since many wells in the Bisbee area are hand-dug and contain metal grates, rusted steel casing and 60 to 70-year old downhole pump assemblies. Also, most of the wells are poorly developed and seldom used which encourages a high degree of turbidity and particulate matter. By filtering the water, metal shavings, rust, turbidity and particulates to which metal ions can adsorb are removed. After the well-specific idiosyncrasies are removed by filtering, actual groundwater conditions can be verified and data from different wells can be reliably correlated. All samples were filtered except the Kimberlin well sample.

4.4 Analytical Results

Both the soil and groundwater sample sets were analyzed by the EPA Region IX Laboratory in Las Vegas, Nevada. A review of the analytical data was conducted by ICF Kaiser Engineers, Inc., and their findings were submitted to the EPA Region IX on January 5,

1990. A Copy of the Data Validation Report (DVR) for the soils analyses is included in Appendix D. The DVR for the groundwater samples is given as Appendix E. The following sections of this report (4.4.1 and 4.4.2) are a discussion of the analytical results of sampling by ADEQ.

4.4.1 Soil Analyses

A total of 22 soil samples were collected in or near the town of Old Bisbee and submitted to the Region IX Lab for RAS (Routine Analytical Services) metals analysis. The analytical results, instrument detection limits (IDL), contract required quantification limits (CRQL), and data qualifications as given in the DVR are presented in Table 4. Also included in Table 4 are the HBGLs for each metal analyte. It has been shown that ingestion or inhalation of metallic particulates deposited by smelters in air, dust, and soil may cause increased heavy metal absorption by children (14). Since lead was previously reported in the soil at concentrations above the HBGL (400 mg/kg) by the DDP, it was the principal metal of interest in this round of sampling by ADEQ. Soil lead values were confirmed to be high in the area of the old smelter and also in some areas of residential Bisbee (See Table 4).

A maximum concentration of 4590 mg/kg soil lead was detected in sample #9 (Control #LV924-39SB) from Bucky O'Neil Hill. (Fig.3) Other samples from the vicinity of the historic smelter site contained lead in concentrations of 3290 mg/kg (2 samples; #8, LV924-38SB and #2, LV924-31SB) and 856 mg/kg (#1; LV924-30SB). Anomalous "hot spots" of lead contamination were observed in samples 19 (LV924-49) and 21 (LV-924-51) on Ledge Avenue and Castle Rock, respectively. The high lead concentrations may be due in part to emissions from a small smelter that was located near the base of Castle Rock in 1878. The contamination may also be due to paint flakes from abandoned buildings.

There may be an alternative explanation for the inconsistent soil lead results. Instead of an anomalous increase in the concentration gradient represented by samples 19 and 21, the concentrations of lead reported in samples sites #5 (LV924-35SB) and #10 (LV924-40SB) may represent false negatives. In this case, the soil lead concentration of samples 5 and 10 (426 mg/kg and 737 mg/kg, respectively) may have been artificially lowered by the addition of uncontaminated soil. Therefore, the reported soil lead concentration for samples 19 and 21 would represent the actual concentration gradient. Further sampling may be necessary to more accurately define soil conditions in this area.

It should also be noted, however, that the reported soil lead concentrations are considered estimates by ICF Kaiser Engineers, Inc. because of ICP serial dilution problems in the laboratory. The values are, consequently, flagged as "J" in Table 4.

TABLE 4: ANALYTICAL RESULTS;
METALS IN SOIL
(RESULTS IN MG/KG)

CANADAD TO	, 73 MTO17	DD/	s-001	70	s-002	700	5-003	l DD	5-004	l BD	s-005	l BB	5-006	n n	S~007	DD	8-008	1 88	s-009
SAMPLE LOC	CATION								1-34SB		1-35SB		1-36SB		4~37SB		1-38SB		1-39SB
SAMPLE ID		LV924	4-30SB	LV92	4-31SB	LV924	1-33SB	LV924	1-34SB	LV92	1-128B	LV924	4-3088	1792	1-3/SB	1,4324	1-3028	LV924	1-395B
	HBGL							D D G		22000		22000		200111		220111 12			
PARAMETER	MG/KG	RESULT	AALID	RESULT	AUPID	RESULT	AYPID	RESULT	ANPID	RESULT	AAPID	RESULT	VALLE	RESULT	AUPID	RESULT	AWPID	RESULT	VALLD
			İ					ļ	<u> </u>					<u> </u>	<u> </u>				
ALUMINUM	1500.0	11100	J	7910	J	2970	J	4330	J	16400	J	3930	J	4330	Ĵ	22800	J	11200	J
ANTIMONY	280.0	7.7	UJ	8.3	JU	6.1	UJ	6.8	UJ	6.6	UJ	6.1	UJ	6.2	JL	11.2	JL	12.2	JL
ARSENIC	1000.0	57 50	J	32.00	J	5.80	J	2.50	J	49.70	J	9.70	J	5.50	J	19.90	J	19.30	J
BARIUM	100000	85.2	J	154	J	52.7	J	182	J	114	J	155	J	97.8	J	349	J	130	J
BERYLLIUM	0.14	1.00	JL	1.10	JL	0.20	U	0.43	JL	0.95	ŭ	1.20		0.89	JL	2.10		1.10	
CADMIUM	100.0	17.1	J	14.0	J	1.7	J	2.5	J	7.2	J	2.9	J	2.6	J	25.3	J	11.1	J
CALCIUM		159000	J	117000	J	1340	J	7760	J	91300	J	1210	J	828	JL	32500	J	111000	J
CHROMIUM	2000	22.2		28 9		7.6	J	10.4	J	19.5		5.8	J	8 6	j	41.7		20 3	
COBALT	14	30.5		22.4		2.0		17.4		12.0		12.9		10.0	JL	15.5		8.6	JL
COPPER	26000	9880		9370		289		296		6120		738		341		7460		3190	
IRON		35800		49500		18700		24800		26100		12800		18500		44900		42100	
LEAD	400	856	J	3290	J	89.1	J	179	J	425	J	123	Ĵ	113	J	3290	ਹ	4590	J
MAGNESIUM		8880	J	10200	J	1880	J	2740	J	36100	J	1900	J	2560	J	12000	J	25100	J
MANGANESE		3160	J	4460	J	206	J	1210	J	1140	J	1490	J	969	J	13900	J	7820	J
MERCURY	40.0	0.4		0.5		0.20	U	0.4		1.1		0.2	U	0.4		0.4		0.5	
NICKEL	3000	36 0		37.7		6.1	U	12.2		15.3		15.6		10.0		87.1		43.5	
POTASSIUM		1140	JL	1260	JL	742	JL	1990		1040	JL	1170		1140		2070		1460	
SELENIUM	900.0	3.9	J	2.5	J	0.4	UJ	0.5	UJ	5.0	J	0.6	JL	0.4	UJ	1.9	J	0.6	JL
SILVER	1000	6.5		7 0		1.0	υ	1.3	JL	5.3		1.0	U	1.0	U	9.2		12.8	
SODIUM		455	JL	429	JL	317	JL	509	JL	416	JL	305	JL	297	JL	367	JL	374	JL
THALLIUM	260 0	0.7	JL	0.8	JL	0.4	Ü	0.5	U	0.4	Ü	0.4	Ü	0.4	U	0.4	U	0.4	Ü
VANADIUM	140	18.8		50.7		6.2	JL	7.6	JL	23.6		4.9	JL	5.3	JL	68.1		40.2	
ZINC	100000	978	J	1570	J	63.7	J	156	J	496	J	202	J	127	J	2720	J	1520	J
% SOLIDS		78.2		72.3		98.6		87.7		91.2		97.6		97.0		93.3		93.6	

NOTES:

VALID--VALIDITY--REFER TO DATA QUALIFIERS IN TABLE 4A; APPENDIX D
HBGL--HEALTH BASED GUIDANCE LEVEL FOR CONTAMINANTS IN SOIL
MDL--METHOD DETECTION LIMIT FOR SOIL
BG--BACKGROUND

CRQL--CONTRACT REQUIRED QUANTITATION LIMIT

TABLE 4: ANALYTICAL RESULTS;

METALS IN SOIL

(Page 2)

(RESULTS IN MG/KG)

SAMPLE LOC	CATION	PD	s-010	PDS	s-011	PDS	s-012	PDS	s-013	PDS	5-014	PD	s-015	PDS	3-016	PD	s-017	PD	s-018
SAMPLE ID		LV92	4-40SB	LV924	4-41SB	LV924	4-42SB	LV924-4	3SB BG	LV924	-44SB	LV92	4-45SB	LV924	1-46	LV92	4-47	LV92	4-48
PARAMETER	HBGL MG/KG	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
ALUMINUM	1500.0	10400	Ĵ	20900	J	5230	Ĵ	5960	Ĵ	4430	Ĵ	4060	Ĵ	7780	J	19500	J	14500	J
ANTIMONY	280.0	6.7	UJ	6.6	UJ	7.0	UJ	6.7	UJ	6.8	ŬJ	7.2	UJ	6.4	UJ	6.5	UJ	6.5	JU
ARSENIC	1000.0	9.00	J	5.60	J	4.10	J	1.50	JL	1.80	JĻ	8.10	J	13.00	J	6.00	J	10 80	J
BARIUM	100000	250	J	169	J	115	J	91.2	J	92.2	J	102	J	153	J	176	J	111	J
BERYLLIUM	0.14	1.40		2.10		0.65	JL	0.85	JL.	1.00	J.L	1.20		1.00	JL	2.90		1.70	
CADMIUM	100.0	13.3	J	6.6	J	2.0	J	2.0	J	1.3	Ĵ	1.3	J	5.0	J	1.5	J	4.1	J
CALCIUM		45600	J	52200	J	1990	J	773	JL	642	JL	471	JL	1930	J	5410	J	65800	J
CHROMIUM	2000	22.7		30.4		8.0	J	10.5	J	9.4	J	5.6	J	14.9		23.7		23.9	
COBALT	14	12.6		13.4		6.0	JL	11.3		7.3	JL	6.3	JL	14.3		18.4		13.6	
COPPER	26000	863		2020		364		56.3		70.8		305		370		78.3		631	
IRON		22900		30000		10700		16100		15600		14400		19300		33200		31400	
LEAD	400	737	J	598	ថ	58.6	J	49.1	J	69.5	J	148	J	263	J	134	J	264	Ĵ
MAGNESIUM		\$870	J	32500	J	2120	J	3200	J	1860	J	1740	J	3490	J	24500	J	16500	J
MANGANESE		11700	J	12100	J	2140	J	1400	J	991	J	976	J	3110	J	2640	J	1830	Ĵ
MERCURY	40.0	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	IJ	0.2	ប	0.2	Ü	0.2	Ŭ
NICKEL	3000	69.8		71.9		16.2		16.4		9.1		7.2	υ	20.5		32.3		18.9	
POTASSIUM		2200		3060		2020		1310		1610		1500		2290		2230		1320	
SELENIUM	900.0	0.5	IJ	0.7	JL	0.5	UJ	0.5	ŨĴ	0.5	UJ	0.5	UJ	0.6	JL	0.4	υJ	0.6	JL
SILVER	1000	4.9		5.0		1.2	JL	1.1	U	1.1	U	1.2	U	2.1		1.1	Ü	3.2	
SODIUM		387	JL	316	JL	413	JL	351	JL	352	JL	326	JL	355	JL	311	JL	426	J.L
THALLIUM	260.0	0.5	U	0.4	U	0.5	U	0.5	U	0.5	U	0.5	U	0.4	U	0.4	U	0.4	J
VANADIUM	140	42.9		42.7		8.4	JL	5.4	JL	9.0	JL	5.1	JL	13.8		23.0		18.9	
ZINC	100000	834	J	800	J	71.3	J	117	J	61.4	J	72.9	J	198	J	594	J	344	J
4. 001.700						0.6.5													
% SOLIDS		89.8		90.6		86.3		89.2		88.7		83.7		93.2		93.0		91.8	

TABLE 4: ANALYTICAL RESULTS;

METALS IN SOIL

(Page 3)

(KESULTS IN MG/KG)

SAMPLE LO	CATION	PD:	5-019	PD:	S-020	PD	S-021	PD	s-022	Metho	od Blan	Metho	od Blan	MDL		CRC	}L
SAMPLE ID		LV92	4-49	LV92	4-50	LV92	4-51	LV92	4-52	Lab 1	Blank 1	Lab I	3lank 2				
PARAMETER	HBGL MG/KG	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
ALUMINUM	1500.0	9970	J	4740	J	9800	J	5720	J	18.3	JL	13.7	JL	1.0		40.0	
ANTIMONY	280.0	7.1	JU	6.5	JÜ	10.6	JU	6.1	UJ	6.0	Ü	6.0	Ü	6.0		12.0	
ARSENIC	1000.0	22.70	J	16.40	J	43.30	J	12.00	J	0.40	U	0.40	U	0.40		2.00	
BARIUM	100000	315	J	111	J	278	J	98.5	J	1.0	U	1.0	Ü	1.0		40.0	
BERYLLIUM	0.14	0.83	JL	0.93	JL	0.78	JL	0.65	JL	0.20	U	0.20	U	0.20		1.00	
CADMIUM	100.0	4.8	J	3.3	J	19.5	J	1.5	J	1.0	Ü	1.0	U	1.0		1.0	
CALCIUM		55700	J	3060	J	55300	J	1010	JL	85.9	JL	40.0	U	40.0		1000	
CHROMIUM	2000	19.2		8.5	J	21.6		12.9		1.5	JL	2.4		1.0		2.0	
COBALT	14	7.7	JL	17,2		21.0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.6	JL	2.0	U	2.0	υ	2.0		10.0	
COPPER	26000	624		767		7170		512		3.8	JL	1.0	U	1.0		5.0	
IRON		22100		20700		33900		17700		10	υ	12.8	JL	10		20.0	
LEAD	400	828	J	187	J	1240	J	188	J	10	Ü	10	U	10		1.0	
MAGNESIUM		11100	J	2910	J	9220	J	2650	J	40.0	Ü	40.0	U	40.0		1000	
MANGANESE		5160	J	1640	J	4900	J	1150	J	7.1		2.1	JL	1.0		3.0	
MERCURY	40.0	0.4		0.2	U	0.7		0.20	Ü	0.15	U	0.15	υ	0.1		0.10	
NICKEL	3000	35.0		14.0		33.9		13.2		6.0	U	6.0	Ü	6.0		8.0	
POTASSIUM		2340		1520		1620	JL	1480		20.0	U	20.0	υ	20		1000	
SELENIUM	900.0	0.7	JL	1.0	JL	4.6	J	0.4	UJ	0.40	U	0.40	U	0.40		1.0	
SILVER	1000	2.6		1.1	U	5.3		1.0		1.6	JĹ	1.0	υ	1.0.		2.0	
SODIUM		390	JL	317	JL	734	JL	307	JL	20.0	Ü	20.0	U	20.0		1000	
THALLIUM	260.0	0.5	U	0.4	U	0.9	JL	0.4	υ	0.40	U	0.40	U	0.40		2.0	
VANADIUM	140	27.6		5.7	JL	25.7		16.4		1.0	U	1.0	U	1.0		10.0	
ZINC	100000	670	J	208	J	1270	J	182	J	1.3	JĻ	1.2	JL	1.0		4.0	
% SOLIDS		84.0		92.7		56.5		98.6									

Increased absorption of arsenic by children living in smelter towns has also been documented (14), but the Bisbee children that were tested did not exhibit arsenic concentrations in blood or urine samples that were above normal. The maximum soil arsenic reported from the current round of sampling was 57.7 mg/kg in sample LV924-30SB. Although this concentration does not exceed the HBGL for arsenic (1000 mg/kg), the data may be misleading. In the DVR by ICF Kaiser Engineers, it is stated that the matrix spike recovery results did not meet the criteria for accuracy and false negatives may exist, therefore, the data are considered estimates and are useful for limited purposes only. The results are flagged as "J" in Table 4.

The aluminum concentration in all samples exceeded the HBGL of 1500 mg/kg. The maximum reported concentration was 22,800 mg/kg in sample LV924-38SB. According to the DVR, however, the results are not considered quantitative because laboratory duplicate results did not meet the criteria for precision. Since the data are considered estimates, they are also flagged "J" in Table 4.

The aforementioned problems with the data also apply to the reported concentrations for cadmium, antimony, selenium, zinc and chromium. Because of laboratory problems, the presented data may not be representative of actual soil conditions.

4.4.2 Groundwater Analyses

A total of ten water samples including three blanks and a duplicate were submitted to the EPA Region IX Laboratory for analysis of VOCs. Although contaminants were detected in some samples, no contaminant was present in a concentration that exceeded Federal or State MCLs. Also, the reported contaminants (methylene chloride and chloroform) were also detected in the blanks which suggests contamination occurred in the laboratory. The results are considered estimates and are flagged "J" in the ICF Kaiser Engineers Inc. DVR for groundwater. Table 5 gives VOC concentrations in the samples, detection limits, Federal MCLs, and data qualifiers.

Eleven groundwater samples were submitted for analysis of dissolved metals to the EPA Region IX Lab. This total includes 2 field blanks, 2 equipment blanks and 1 duplicate sample. None of the samples contained metals in concentrations that exceeded Federal MCLs. The Castle Rock sample (LV924-15), however, contained selenium at 18.1 ug/l which exceeds the present State MCL of 10.0 ug/l. No data qualifier was placed on the reported selenium concentration in this sample by ICF Kaiser Engineers.

Also, as stated in the DVR, the reported concentrations of silver in all of the samples are considered estimates because of matrix spike recovery problems. According to the DVR, these accuracy problems may result in false negatives and the data is,

TABLE 5: ANALYTICAL RESULTS; VOCS IN GROUNDWATER (RESULTS IN MG/L)

SAMPLE LOCATION															
SAMPLE I.D.			LV924-01 D1		LV924-02		LV924-03 BG		-04	LV924	-05	LV924	-06 FB	LV924	-07
COMPOUND	FEDERAL MCL	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
VOLATILES						 	 					 	i	ļ	
METHYLENE CHLORIDE		1	Ū	1	JÜ	1	JU	1	JÜ	1	JU	0.6	J	1	U
CHLOROFORM	100	1	Ü	. 1	U	1	Ü	1	υ	1	U	0.5	J	1	Ü

SAMPLE LOCATION								METHOD	METHOD BLANK		METHOD BLANK		BLANK		
SAMPLE I.D.		LV924-08 AB		LV924-09 D1		LV924-10 FB		VBL	.K1	VBI	.K2	VBI	.K3	CRC)L
COMPOUND	FEDERAL MCL	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
VOLATILES															
METHYLENE CHLORIDE		1	Ü	1	U	1	υ	1	υ	1	ט	1	U	1	
CHLOROFORM	100	0.4	J	1	υ	0.4	J	1	U	1	U	1	Ü	1	

*THE OTHER REQUESTED ANALYTES WERE ANALYZED FOR, BUT "NOT DETECTED."
THE SAMPLE QUANTITATION LIMITS ARE LISTED IN TABLE 5A, APPENDIX E.

NOTES:

VAL--VALIDITY--REFER TO DATA QUALIFIERS IN TABLE 5B, APPENDIX E.

CRQL--CONTRACT REQUIRED QUANTITATION LIMITS

NA--NOT ANALYZED

D1, D2, ETC. -- FIELD DUPLICATE PAIRS

FB--FIELD BLANK, EB--EQUIPMENT BLANK, TB-TRAVEL BLANK

BG--BACKGROUND SAMPLE

therefore, useful for limited purposes only. The concentrations, HBGLs, detection limits and data qualifiers for the metals in groundwater analysis are given in Table 6.

5.0 Emergency Response Considerations

The EPA is authorized under the National Contingency Plan [40CFR 300.415(b)(2)] to consider emergency response actions at sites which pose an imminent threat to the environment or human health. However, there is no apparent need for emergency actions at the PDHS site at this time. Removal of the soil from the steep slopes above the smelter site would encourage mass wasting processes and erosion of the remaining topsoil. Although high soil lead concentrations are located near the town of Bisbee on Bucky O'Neil and Queen Hills, the area is fenced and marked with "No Trespassing" signs and do not pose a threat to the public.

6.0 Summary of HRS Considerations

The PDHS site is located at the mouth of Brewery Gulch along U.S. Highway 80 in Bisbee, Arizona. The geographic location of the site is the SE 1/4, SE 1/4, SW 1/4 Section 9, Township 23S, Range 24E [(D-23-24)9cdb]. The site consists of two abandoned smelter sites located approximately 1200 and 1500 feet, respectively, east of the entrance to the Copper Queen Mine. The smelters were used from 1880 to July, 1904 to refine oxide ores of copper, lead, arsenic, antimony and other heavy metals.

Emissions to the air of metal particulates from the smelters may be responsible for elevated soil lead concentrations in the Bisbee area. Further, ingestion or inhalation of dust of these particulates, notably lead, is thought to be responsible for elevated metal concentrations in the blood of children. A study conducted by the DDP showed that children living in smelter towns are more likely to have high levels of lead in their blood as opposed to children who live in non-smelter towns. The DDP study was expanded to Bisbee in October and November of 1985. Results of the study indicated that four children from the Bisbee area had blood lead concentrations that exceeded 25 ug/100 ml.

As part of a follow-up study by the DDP, soil samples were collected from Old Bisbee and the surrounding communities in 1986. From a total of 75 soil samples, lead was detected from a maximum concentration of 1648 ug/g to less than 50 ug/g with a median concentration of 216 ug/g. The HBGL for lead in soil is 400 ug/g. Although lead soil concentrations above the HBGL were reported, sampling locations were not precisely documented. The DDP concluded that the high concentrations of lead in the soils from Old Bisbee could be attributed to smelting activities conducted from 1878 to 1904 or to peeled lead-based paint from abandoned structures.

TABLE 6: ANALYTICAL RESULTS;
METALS IN GROUNDWATER
(RESULTS IN UG/L)

DATE SAMPL	ED	10/09	5/89	10/0	5/89	10/0	5/89	10/0	5/89	10/0	6/89	10/0	6/89	10/0	5/89	10/0	6/89
SAMPLE I.D		LV924-	15 D1	LV924-	16 D1	LV92	4-17	LV924-	18 BG	LV92	4-19	LV92	4-20	LV924-	21 FB	LV924-	22 EB
	HBGL	<u> </u>					T ===]						l .		<u> </u>
PARAMETER	(ug/l)	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
ALUMINUM	73	135	JL	136	JL	112	JL	119	JL	122	JL	138	JL	5.0	U	5.0	U
ANTIMONY	14	30.0	Ŭ	30.0	Ŭ	30.0	Ŭ	30.0	Ü	30.0	U	30.0	Ü	30.0	¥	30.0	U
ARSENIC	50	2.0	Ū	2.0	Ū	2.0	Ŭ	2.0	Ū	2.0	U	2.0	U	2.0	Ū	2.0	Ū
BARIUM	5000	84.70	JL	85.4	JL	51.3	JL	209.0		89.9	JL	436.0		5.0	U	5.0	Ū
BERYLLIUM	0.007	1.00	Ū	1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ŭ	1.0	Ŭ	1.0	U
CADMIUM	5.0	5.00	Ū	5.0	Ŭ	5.0	Ū	5.0	U	5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ū
CALCIUM		76000		76600		62300		67600		68300		77700		200	Ū	200	Ū
CHROMIUM	100	5.0	Ū	5.0	Ü	5.0	Ŭ	5.0	U	5.0	Ŭ	5.0	Ŭ	5.0	Ŭ	5.0	U
COBALT	0.70	10.0	ប	10.0	U	10.0	Ü	10.0	U	10.0	U	10.0	Ū	10.0	Ų	10.0	Ū
COPPER	1300	5.0	U	5.0	Ū	5.0	บ	5.0	Ū	5.0	Ū	21.7	JL	5.0	Ū	5.0	U
IRON		50.0	Ū	50.0	U	115.0		50.0	U	84.8	JL	50.0	U	50.0	U	50.0	U
LEAD	20	2.0	ับ	2.0	מ	2.0	ช	2.0	U	2.0	บ	2.2	JL	2.0	ש	2.0	บ
MAGNESIUM		20800		21100		19400		17600		18500		29000		500	ט	200	บ
MANGANESE		126		128		11.5	JL	151		420.0		19.6		5.0	U	5.0	U
MERCURY	2.0	0.20	U	0.2	Ū	0.2	U	0.2	U	0.2	ט	0.2	U	0.2	Ū	0.2	Ü
NICKEL	150	30.0	Ŭ	30.0	U	30.0	Ū	30.0	Ū	30.0	Ū	30.0	Ŭ	30.0	Ŭ	30.0	U
POTASSIUM		3890	JL	3910	ĴĿ	5170		2870	JL	6820		3390	JL	100	บ	100	Ŭ
SELENIUM	4.5	2.0	Ŭ	2.0	U												
SILVER	50	5.0	JŪ	5.0	JU	5.0	JÜ	5.0	JU	5.0	JÜ	5.0	JU	5.0	JÜ	5.0	JU
SODIUM		18400		18500		17300		24900		34500		19500		100	Ŭ	100	U
THALLIUM	13	2.0	Ŭ	2.0	U	2.0	ŭ	2.0	U								
VANADIUM	7.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	Ŭ	5.0	U	5.0	U	5.0	U
ZINC	5000	5.0	บ	5.0	U	23.2		1240		39.2		146.0		5.0	U	5.0	U

NOTES:

VAL-VALIDITY-REFER TO DATA QUALIFIERS IN TABLE 5B; APPENDIX E
HBGL--HEALTH BASED GUIDANCE LEVEL FOR CONTAMINANTS IN WATER
IDL-INSTRUMENT DETECTION LIMIT FOR WATERS
MDL-METHOD DETECTION LIMIT FOR SOILS
D1, D2, ETC.-FIELD DUPLICATE PAIRS
FB-FIELD BLANK, EB-EQUIPMENT BLANK, TB-TRAVEL BLANK; BG-BACKGROUND
CRQL-CONTRACT REQUIRED QUANTITATION LIMIT

TABLE 6. ANALYTICAL RESULTS;

METALS IN GROUNDWATER (PAGE 2)

(RESULTS IN UG/L)

DATE SAMPL	ED	10/10/	89	10/1	0/89	10/1	0/89	Meth	od Blan	I.)L	CR	QL
SAMPLE I.D	,	LV924-	22A	LV924-	23 EB	LV924-	24 FB	Lab	Blank				
PARAMETER	HBGL (ug/l)	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID	RESULT	VALID
ALUMINUM	73	188	JL	5.0	U	5.0	U	5.0	U	5.0	}	200.0	
ANTIMONY	14	30.0	Ü	30.0	Ü	30.0	Ü	30.0	Ü	30.0		60.0	
ARSENIC	50	2.0	U	2.0	U	2.0	Ū	2.0	Ū	2.0		10.0	
BARIUM	5000	57.2	JL	5.0	U	5.0	U	5.0	Ū	5.0		200.0	
BERYLLIUM	0.007	1.0	Ŭ	1.0	Ũ	1.0	Ŭ	1.0	Ü	1.0		5.0	
CADMIUM	5.0	5.0	Ŭ	5.0	U	5.0	Ū	5.0	Ū	5.0		5.0	
CALCIUM		112000		200	U	200	Ü	200	U	200		5000	
CHROMIUM	100	5.0	Ŭ	5.0	Ü	5.0	U	5.0	U	5.0		10.0	
COBALT	0.70	10.0	U	10.0	ប	10.0	ប	10.0	Ū	10.0		50.0	
COPPER	1300	5.0	Ū	5.0	Ü	5.0	Ū	5.0	Ŭ	5.0		25.0	
IRON		100.0		50.0	Ŭ	50.0	ប	50.0	Ŭ	50.0		100.0	
LEAD	20	2.0	Ū	2.0	Ū	2.0	U	2.0	Ū	2.0		5.0	
MAGNESIUM		35100		200	ช	200	Ū	200	מ	200		5000	
MANGANESE		13.6	JL	5.0	บ	5.0	U	5.0	บ	5.0		15.0	
MERCURY	2.0	0.2	Ŭ	0.2	U	0.2	Ŭ	0.2	U	0.2		0.2	
NICKEL	150	30.0	Ŭ	30.0	U	30.0	U	30.0	Ū	30.0		40.0	
POTASSIUM		2100	JL	100	U	100	U	100	U	100		5000	
SELENIUM	4.5	18.1		2.0	Ü	2.0	U	2.0	ប	2.0		5.0	
SILVER	50	5.0	JU	5.0	JU	5.0	JÜ	5.0	ប	5.0		10.0	
SODIUM		27400		100	U	100	U	100	บ	100		5000	
THALLIUM	13	2.0	U	2.0	U	2.0	Ŭ	2.0	ប	2.0		10.0	
VANADIUM	7.0	5.0	Ŭ	5.0	U	5.0	U	5.0	U	5.0		50.0	
ZINC	5000	10.4	JL	5.0	U	5.0	Ū	5.0	ប	5.0		20.0	

Reported high concentration of lead in the soil at Bisbee prompted ADEQ to conduct a systematic sampling effort under CERCLA to assess the nature, extent and severity of soil lead contamination. The study was also conducted to gather sufficient data to make recommendations for further actions under CERCLA or other State programs if necessary.

Concentrations of lead and aluminum that were detected in soil samples collected by ADEQ exceeded the HBGLs of 400 and 1500 mg/kg, respectively. A maximum concentration of 4590 mg/kg soil lead was detected in sample #9 (Control #LV924-39SB) from Bucky O'Neil Hill. Other samples from the vicinity of the PDHS site contained lead in concentrations of 3290 mg/kg (2 samples; #8, LV924-38SB and #2, LV924-31SB) and 856 mg/kg (#1; LV924-30SB). The maximum reported concentration of aluminum was 22,800 mg/kg in sample LV924-38SB. These results, however, are considered estimates in a DVR for soil analysis by ICF Kaiser Engineers, Inc. because of problems in the laboratory.

The maximum soil arsenic reported from the current round of sampling was 57.7 mg/kg in sample LV924-30SB. Although this concentration does not exceed the HBGL for arsenic (1000 mg/kg), the data may be misleading. In the DVR, it is stated that the matrix spike recovery results did not meet the criteria for accuracy and false negatives may exist, therefore, the data are considered estimates and are useful for limited purposes only.

Groundwater samples were collected from 6 wells within the town of Bisbee and analyzed for metals and VOCs. Although contaminants were detected in some samples, no contaminant was present in a concentration that exceeded Federal or State MCLs.

A PA was prepared for the PDHS facility by the ADHS in October, 1986. Groundwater, air and additional soil sampling for heavy metal content in Bisbee was recommended. The PA was the subject of two separate evaluations by ICF Technology Inc. dated December 23, 1987 and January 19, 1988. Their review comments were forwarded to the EPA, Region IX. ICF Technology recommended no further action under CERCLA in the memo of December, 1987 and the EPA concurred. The recommendation was based on a low target population for groundwater, the lack of uses for surface water and the inability to evaluate a site based on soil conditions under the current HRS. With the proposed addition of the on-site exposure pathway in the revised HRS, however, PDHS may qualify for additional investigation under CERCLA. Also, the new HRS expands the exposure pathway for the air route to include the potential of a release to the air from contaminated soil. Concentrations of lead above the HBGL have been documented in the soil at Bisbee. Because of potential adverse environmental impact and the revised eligibility of the site for further action under CERCLA, an SI was conducted by ADEQ.

Based on the findings presented in this SI report, the potential of lead particulates being dispersed in windblown dust, a potential high target population for a release to the air, and the high potential for direct contact from the soil, the site appears to be eligible for further consideration under CERCLA. Additional soil sampling may be necessary to better define the severity of lead contamination of the soil within Bisbee, including documented "hot spots". Any sampling program should be designed to assess soil conditions of all areas within Bisbee, especially areas frequented by small children.

7.0 ADEQ Management Review/Concurrence

Signature Heyrood	8/24/C	<u>7</u>
W. W. Williams	9/17/9/ Date	
bignature	Dace	
8.0 <u>EPA Concurrence</u>	<u>Initial</u>	Date
No Further CERCLA Action		
Listing Site Inspection		
Notes:		

9.0 References

- 1 Arizona Department of Water Resources, Merged 35, 55 and GWSI Well Registry, July, 1988.
- 2 Graeme, R.W., BISBEE, ARIZONA, Famous Mineral Localities, in THE MINERALOGICAL RECORD, September-October, 1981.
- 3 Bryant, D.G., and Metz, H.E., Geology and Ore Deposits of the Warren Mining District, in GEOLOGY OF THE PORPHYRY COPPER DEPOSITS, SOUTHWESTERN NORTH AMERICA, Pub. by the University of Arizona Press, 1986.
- 4 Support Document For Sole Source Aquifer Designation, Bisbee-Naco Area, Cochise County, Arizona, U.S. Environmental Protection Agency, Region IX, Office of Groundwater, May 1988
- 5 Williams, J.D., Arizona Department of Environmental Quality, Phelps Dodge Historical Smelter Groundwater and Soil Sampling Plan, September 1988.
- 6 Hays, P.T., and Landis, E.R., Geologic Map of the Southern Part of the Mule Mountains, Cochise County, Arizona, Map I-418, Department of the Interior, U.S. Geological Survey.
- 7 Engineering Fundamentals Series: Selective Flotation-An Art as Well as a Science, in Mining Engineering, Vol. 34, No. 3, March 1983.
- 8 Engineering Fundamentals Series: Sulfide and Nonsulfide Flotation Applications, in Mining Engineering, Vol. 34, No.4, April, 1982.
- 9 Climatic Atlas of the United States, U.S. Department of Commerce, Environmental Science Services Administration, Environmental Data Service, June 1968.
- 10 NOAA Atlas 2, Vol. VIII, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Hydrology.
- 11 Rickard, F.R., History of Smelting in Arizona, in Proceedings of the History of Mining in Arizona Symposium, Society of Mining Engineers, AIME, 1987.
- 12 Parsons, L., Preliminary Assessment, Phelps Dodge Historical Smelter, Bisbee, Arizona. October 21, 1986.
- 13 Littin, G.R., Groundwater Resources of the Bisbee-Naco Area, Cochise County, Arizona. U.S. Geological Survey, Water Resources Investigation Report 87-4103. Tucson, Arizona, June 1987.

- 15 Bailey, L.B., 1983, BISBEE-QUEEN OF THE COPPER CAMPS, Westernlore Press, Tucson, Arizona. pp. 11-84; 99-138.
- 16 Rabb, D.D., and Chase, C.K., History of Mineral Processing in Arizona, in Proceedings of the History of Mining in Arizona Symposium, Society of Mining Engineers, AIME, 1987.
- 17 Graeme, R.W., Bisbee, Arizona's Dowager Queen of Mining Camps, A Look at Her First 50 Years, in Proceedings of the History of Mining in Arizona Symposium, Society of Mining Engineers, AIME, 1987.
- 18 Baker, E.L, et al: A Nationwide Survey of Heavy Metal Absorption in Children Living Near Primary Copper, Lead, and Zinc Smelters, American Journal of Epidemiology, Vol. 106, No.4, 1977.
- 19 Hayes, P.T. and Landis E.R., Geologic Map of the Southern Part of the Mule Mountains, Cochise County, Arizona. U.S. Geological Survey, Map I-418, 1964.
- 20 Littin, G.R., Groundwater Resources of the Bisbee-Naco Area, Cochise County, Arizona. U.S. Geological Survey, Water Resources Investigations Report 87-4103, Tucson, Arizona. June 1987.
- 21 Arizona Statistical Review, 43rd Annual Edition, September 1987, Valley National Bank of Arizona.
- 22 Draft Guidance Levels for Contaminants in Drinking Water and Soil, Office of Risk Assessment and Investigation, Division of Disease Prevention Services, Arizona Department of Health Services, February 1990.
- 23 Phelps Dodge Historical Smelter, PA/SI Unit File, Arizona Department of Environmental Quality.
- 24 Hendricks, D.M., ARIZONA SOILS, Pub. by the College of Agriculture, University of Arizona, Tucson, Arizona. Copyright 1985.
- 25 PRELIMINARY ASSESSMENT GUIDANCE MANUAL FOR FEDERAL FISCAL YEAR 1990. Prepared by the Arizona Department of Environmental Quality from materials provided by Ecology & Environment, Inc., September 1989.

Appendix A
Contact Log And Reports

CONTACT LOG
Prical Smelter. Facility Name: PD Historical Smelter / EPA ID# : AZD981680242

State ID# 22

Name	Affiliation	Phone #	Date	Information`
Al Rand	Arizona Water Company	432-5321	9/16/88	See Contact Report
Arnold Nanez	Cochise County Department of Health Services	432-5471 Ext. 471	9/16/88	11 11 11
Steve Eady	Phelps Dodge Corporation	432-5342	9/16/88	11 11 11
			7 7 2 2	
		\$ 5		

CONTACT REPORT

AGENCY/AFFILIATION: Arizona Water Company			
DEPARTMENT:			
ADDRESS/CITY: 44 Main Str	ceet, Box AW, Bisbee		
COUNTY/STATE/ZIP: Cochise	e County, Arizona, 85	5603	
CONTACT(S)	TITLE PHONE		
1. Al Rand	Division Manager	(602) 432-5321	
2.			
ADEQ PERSON MAKING CONTACT: Dan Williams, Hydrology DATE: 9/16/88			
SUBJECT: Public water supp	oly and distribution		
SITE NAME: PD Historical Smelter EPA ID#: AZD981680242			

DISCUSSION:

Mr. Rand informed me that drinking water is distributed to the citizens of Bisbee via pipeline from a well field located near Naco, Arizona. The wells are approximately 9 miles to the south of Bisbee. Before distribution, the water is chlorinated and fluoridated. The static water level of the wellfield is approximately 40 feet below land surface. Mr. Rand suggested that I get in touch with Steve Eady, geologist at Phelps Dodge Corporation, for more information regarding the local hydrogeology and geology.

CONTACT REPORT

AGENCY/AFFILIATION: Coch	ise County Department	of Hea	alth Services
DEPARTMENT: Sanitation			
ADDRESS/CITY: Drawer 185	8, Bisbee, Arizona		
COUNTY/STATE/ZIP: Cochise	County, Arizona 8560)3	
CONTACT(S)	TITLE PHONE		
1. Arnold Nanez	Supervising Sanitarian		432-5471, Ext 471
2.	$\gamma \gamma \gamma \gamma$		
ADEQ PERSON MAKING CONTAC	T: Dan Williams, Hydr	cology	DATE: 9/16/88
SUBJECT: Domestic wells in	n Bisbee		
SITE NAME: PD Historical Smelter EPA ID#: AZD981680242			

DISCUSSION:

Mr. Nanez, at my request, provided a tour of Old Bisbee and assisted in locating domestic wells within the town. He said that the County Health Department does not rotinely sample the wells, but if the owner requests a test for coliform bacteria, the Department will collect a sample and run the test. We spoke with the owners of 7 wells and they were all agreeable to sampling.

CONTACT REPORT

AGENCY/AFFILIATION: Phelps Dodge Corporation			
DEPARTMENT: Exploration De	evelopment Group		
ADDRESS/CITY: Copper Queen	n Branch, Highway 92,	Bisbee	
COUNTY/STATE/ZIP: Cochise, Arizona, 85603			
CONTACT(S)	TITLE PHONE		
1. Steve Eady	Geologist (602) 432-5342		(602) 432-5342
2. Lance Pape	Hydrogeologist (602) 432-5342		(602) 432-5342
ADEQ PERSON MAKING CONTACT: Dan Williams, Hydrology DATE: 9/16/88			
SUBJECT: Hydrogeology of the Bisbee area			
SITE NAME: PD Historical Smelter EPA ID#: AZD981680242			

DISCUSSION:

I contacted Mr. Eady from the Arizona Water Company and set up an appointment. When I arrived at PDC I was greeted by Mr. Eady and also Mr. Lance Pape, a hydrogeologist with PDC. They told me that PDC did not own any wells within the town of Bisbee. They informed me of the groundwater divide That separates the town of Bisbee and the basin-fill aquifer to the south. They introduced me to the local geology but, for propriety reasons, would not elaborate in too much detail. They requested a copy of the SI report when it was completed.

Appendix B

Support Documents For The DDP Blood Lead Survey

Inter-Office Memorandum

TO: Lloyd F. Novick, M.D., M.P.H.

Director

June 24, 1986

THRU: Glyn G. C

Glyn G. Caldwell, M.D.

Assistant Director

Division of Disease Control Services

FROM:

Norman J. Petersen, Manager 799.
Office of Chronic Disease and
Environmental Health Services

John Beck

Public Health Sanitarian II

RE: Addendum to the January 24, 1985 memorandum reporting results of the lead and arsenic study in Douglas, Bisbee and Safford

Following submission of the initial report on this subject, additional analyses were performed on available data and additional investigations were conducted in the Bisbee area. These included:

- 1. Analyses of data from each of the three study communities to determine whether children with a positive history of pica (craving and ingestion of substances not fit for food) had higher blood lead levels than pica-negative children.
- 2. Analyses of data from Douglas to determine whether the distance from place of residence to the Copper Queen smelter was correlated with blood lead levels.
- 3. Analyses of data from each of the three study communities to determine whether blood lead levels were correlated with erythrocyte protoporphyrin (EP) levels.
- 4. Environmental investigations of the homes and environs of the four Bisbee children who exhibited blood lead levels in excess of 25 ug/100 ml.

A brief description of methods along with results and recommendations are presented here.

During the community surveys, the mother of each participating child was asked whether the child exhibited a craving for substances not fit for food. This question was asked because lead toxicity in children has frequently been associated with a history of pica involving ingestion of substances containing lead, such as paint chips, painted wood and dirt. Table 1 presents the results of this inquiry for Douglas, Bisbee and Safford. Only in Safford was the mean blood lead level in pica-positive children statistically significantly higher than in pica-negative children (P < .01).

((

l.loyd F. Novick, M.D., M.P.H.
Page 2
June 24, 1986

In the 1975 study of smelter towns conducted by the Centers for Disease Control (CDC), there were no positive correlations found between history of pica and blood lead. Interestingly, the CDC study found that approximately 43% of all children gave a positive history for pica, while the overall rate for the three communities in the 1985 survey approximated only 10%. Since the pica question was designed to be asked similarly in both studies, and since there is no apparent reason for the observed difference, there is some question as to the validity of the pica responses. Consequently, these statistical analyses involving pica should be viewed with some caution.

The residence of each child participating in the Douglas survey was plotted on a map and the distance from the residence to the Copper Queen smelter was measured and converted to miles. A linear regression analysis was performed to determine whether a correlation existed between these distance values and the blood lead levels associated with these distances. The slope of the regression line was not significantly different than zero indicating that no correlation existed. In a different approach, the blood lead levels of children living less than two miles from the smelter stack were compared to the blood lead levels in children living two to five miles from the smelter. The results of this analysis are presented in the table 2 and show that both the mean and median levels in the more distant population were lower than in the population living less than two miles from the stack. However, the difference between the mean values was not statistically significant. These findings were in agreement with those of the 1975 CDC study which showed no consistant relationships between blood lead levels and distance of residence from a smelter.

In both the 1975 and 1985 surveys, blood samples were assayed for both lead and EP levels. However, because of the difficulty and expense involved in obtaining and analyzing venous blood for lead, the CDC document, "Preventing Lead Poisoning in Young Children", recommends that hematofluorometer measurements of EP be used to screen children for elevated lead levels. Using this technique, only children with EP levels of 35 ug/100 ml or more in a capillary blood sample would have venous blood drawn for a lead level determination. Several statistical analyses were performed to evaluate the effectiveness of the EP measurement as a screening technique for elevated blood lead levels in the 1985 surveys.

Of 335 blood samples, 12 showed EP levels of 35 ug/100 ml or greater. Of these 12 samples, only two showed lead levels of 25 ug/100 ml or greater for a "false positive" rate of 83%. Four of the 335 blood samples showed lead levels of 25 ug/100 ml or greater. Of these four samples, only two showed EP levels of 35 ug/100 ml or greater for a "false negative" rate 50%. These were not impressive values for a screening technique.

The paired EP and lead values were subjected to regression analysis to determine whether a correlation existed. Only in the Bisbee data did the analysis of the 60 highest lead values against paired EP values show a statistically significant positive relationship.

Lloyd F. Novick, M.D., M.P.H. Page 3 June 24, 1986

The parents of the four Bisbee children with blood lead levels of 25 ug/100 ml or greater were advised, by mail, to bring this information to the attention of their family physicians. In cooperation with the Cochise County Health Department, a followup visit was made to each home to identify possible sources of lead exposure.

All four families were negative for exposure to lead glazed pottery, as well as occupational or craft sources of lead. However, the dwellings of all four families showed evidence of old, peeling paint. While only one of the four children had been recorded as positive for pica during the survey visit, under more detailed questioning during the followup visit it was reported that each child had, in fact, been observed chewing on paint chips. Samples of paint chips from each dwelling and surface soil from outside each dwelling were collected and quantitatively assayed for lead in the laboratory. The results of these assays are shown in table 3.

The U.S. Consumer Product Safety Commission considers any paint with a lead content greater than 600 ug/g to be lead-based. Using this criterion, it was evident that lead-based paint was present at each dwelling. The CDC has noted that blood lead levels rise above background when soil and dust levels reach the 500-1000 ug/g range. Soil levels outside two of the four dwellings were found to be in this range. Each family was advised, by mail, of the findings related to the family residence and was urged to take remedial steps and precautions.

Natural soil in southern Arizona contains lead at levels ranging from 2-100 ug/g. The finding of levels exceeding this range at homes in Bisbee prompted additional surface soil sampling in residential areas of this community. The results of assays of these samples are shown in table 4. The lead level in all but one of the 20 samples exceeded the range of natural soils and seven samples contained lead levels in the range that could affect blood lead levels of exposed children.

Although more soil samples will be needed from neighborhoods outside of "Old Bisbee" to clarify the pattern of lead distribution in this general area, it is evident from the data in table 4 that "Old Bisbee" constitutes at least one location where surface soil has been heavily contaminated with lead. Historic records indicate that more than one smelter previously operated in the "Old Bisbee" district, which may explain the observed deposition of lead.

In an effort to determine whether these high lead levels in soil have affected the residents, the blood lead levels in residents of the "Old Bisbee" district were compared with levels in residents of "Other Bisbee" districts. The results are presented in table 5 and show that the mean and median blood lead levels were higher in residents of "Old Bisbee" than in residents of "Other Bisbee". However, the difference between the mean levels was not statistically significant.

Lloyd F. Novick, M.D., M.P.H. Dage 4 June 24, 1986

The following recommendation has been made in writing to the Director, Cochise County Health Department:

1. Establish a continuing lead screening program for all Bisbee area children one through five years of age supported by case management, environmental assessment, public health intervention and associated laboratory services. The program should be based on guidelines contained in "Preventing Lead Poisoning in Young Children" issued by the CDC in January of 1985.

The following recommendations should be considered by the Arizona Department of Health Services:

- 2. Conduct additional soil sampling in Bisbee and Douglas to describe the geographic distribution of elevated lead levels and identify relationships between these distributions and present and former smelter sites.
- 3, Conduct range-finding soil sampling in residential areas near present or former smelter sites throughout Arizona to identify potentially hazardous lead levels.
- 4. Conduct additional evaluations of the EP technique for lead screening programs in Arizona to determine why results from its use in the 1985 study correlated so poorly with blood lead levels.

NJP/mg

PROPORTION OF DOUGLAS, BISBEE AND SAFFORD CHILDREN
REPORTING PICA AND BLOOD LEAD LEVELS
BY PRESENCE OR ABSENCE OF PICA - 1985

	PICA POSITIVE		PICA NEGATIVE			
	n	x	MEAN LEVEL ug/100 ml	n	7	MEAN LEVEL ug/100 m1
DOUGLAS	10	8.8	11.5	104	91.2	13.1
BISBEE	16	13.9	12.2	99	86.1	12.5
SAFFORD	9	8.5	13.0 *	97	91.5	8.9

^{*} Significantly different P<.01

TABLE 2

BLOOD LEAD LEVELS (ug/100ml) IN

DOUGLAS CHILDREN BY DISTANCE FROM

SMELTER STACK - 1985

	0 - 2 MILES	2 - 5 MILES
NUMBER OF SAMPLES	40.0	74.0
MEAN	13.7	12.7
MEDIAN	13.4	12.2
S.D.	4.5	3.9
RANGE	6.0 - 24.8	6.1 - 21.3

LEAD LEVELS IN PAINT AND SOIL FROM HOMES OF CHILDREN WITH ELEVATED BLOOD LEAD LEVELS - 1985

номе	CHILD'S BLOOD LEAD LEVEL ug/100 ml	PAINT CHIP LEAD LEVEL ug/g	SOIL LEAD LEVEL ug/g
A	43.8	4,040	550
			452
			3 97
В	33.0	34,157	729
		4,110	
С	29.6	2,860	420
D	26.0	1,280	335
	-	968	

TABLE 4

LEAD LEVELS IN BISBEE AREA SOIL - 1985

GENERAL LOCATION	SOIL LEVEL ug/g
Old Bisbee	1648
Old Bisbee	1385
Old Bisbee	1111
Old Bisbee	956
Old Bisbee	741
Old Bisbee	681
Old Bisbee	502
Old Bisbee	455
Old Bisbee .	431
Old Bisbee	407
Old Bisbee	371
Bakerville	371
Old Bisbee	347
Warren	234
Old Bisbee	228
Tin Town	185
Saginaw	180
Terra Del Flores	125
Saginaw	120
Don Luis	64

BLOOD LEAD LEVELS (ug/100 ml) IN BISBEE AREA CHILDREN BY DISTRICT OF RESIDENCE - 1985

	OLD BISBEE	OTHER BISBEE
NO. OF SAMPLES	36	79
MEAN	14.0	11.8
MEDIAN	12.3	11.5
S. DEVIATION	7.7	4.3
RANGE	3* - 26.0	3* - 43.8

^{* 3} is used to represent, statistically, those sample results that were below the detectable limit of 6 ug/100 ml.

ARIZONA DEPARTMENT OF HEALTH SERVICES
Inter-Office Memorandum

January 8, 1985

TO:

Lloyd F. Novick, M.D., M.P.H.

Director

FROM:

Norman J. Petersen

Manager, Office of Chronic Disease and Environmental Health Services

John Beck,

Public Health Sanitarian II

THRU:

Glyn G. Caldwell, M.D.

Assistant Director

Division of Disease Control Services

RE:

Preliminary analyses of blood lead and urine arsenic data collected during October and November, 1985 from Children in Douglas, Bisbee,

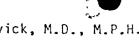
and Safford.

Between October 28 and November 16, 1985, blood and urine specimens were collected from children 1-5 years of age living in Douglas, Bisbee and Safford. Children were selected for the study using a systematic sampling procedure described in the study protocol and participation was voluntary. The study design was patterned after a similar but larger project conducted in 1975 by the Centers for Disease Control (CDC) which included the communities of Douglas and Safford. The purpose of the present study was to evaluate lead and arsenic absorption among preschool-age children in the vicinity of the Douglas smelter and to compare these observations with measurements from Bisbee and Safford. The plan also envisioned comparisons with the 1975 results from Douglas and Safford.

Lloyd F. Novick, M.D., M.P.H. Page -2-

A zinc protoporphyrin (ZnPP) test and a hematocrit were performed as the blood samples were received in the field laboratory and before preparation for shipment. All blood and urine samples were shipped to the ADHS Laboratory in Phoenix for lead and arsenic analysis.

ZnPP was measured using a hematofluorometer calibrated to read in erythrocyte protoporphyrin (EP) equivalents. The calibration of this instrument includes an adjustment to account for the expected hematocrit range and analysis of the hematocrit data confirmed that the appropriate calibration value had been used. Quality control tests on 30 split blood samples using a different hematofluorometer in the laboratory showed excellent agreement and confirmed the validity of the field measurements. In the 1975 study EP was measured using a laboratory extraction method. Comparative studies have shown that at high values the ZnPP technique may underestimate the EP present. However, for values up to 35 ug/100ml both techniques give equivalent results.


The minimum detectable level of blood lead in analyses performed by the State Laboratory was 6ug/100ml and was comparable to the detection level in the 1975 tests. However, due to a change in methodology, recommended by the CDC reference laboratory, the State Laboratory detection limit for urine arsenic in this study was 40 ug/l compared to a reported detection limit of 1-2 ug/l in 1975. Because the majority of the arsenic values for children in this study fell below the detectable limits, they could not be readily compared with the 1975 study results.

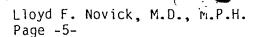
Lloyd F. Novick, M.D., M.P.H. Page -3-

Quality assurance samples for urine arsenic and blood lead were submitted to the CDC reference laboratory. A comparison of these split sample test results are presented in the following table and show that for both lead and arsenic, the State Laboratory measured higher mean values than did the reference laboratory. Additional linear regression and correlation analyses showed that these differences were sufficiently consistent to permit the use of the data, even though they overestimate the levels present in the specimens.

	Blood lead	Urine Arsenic
	ug/100ml	ug/l
No. of samples	27	11
CDC reference		
laboratory mean	15.3	79
State Laboratory,		
mean	20.3	117

A statistical summary of the blood lead results from the three study communities is presented in the following table with blood lead values expressed in ug/100ml. An elevated blood lead level is defined as a concentration of lead in whole blood of 25 ug/100ml or greater.

Lloyd F. Novick, M.D., M.P.H. Page -4-


	Douglas	Bisbee	Safford
No. of Samples	114	115	106
Mean	13.1	12.5	9.3
Median	12.6	12.0	9.3
S. Deviation	4.1	5.7	4.3
Range	*3-24.8	*3.43.8	*3.21.4

* 3 is used to represent, statistically, those sample results that were below the detectable limit of 6 ug/100ml.

A statistical summary of blood ZnPP results as EP equivalents is presented in ug/100ml in the following table. An elevated EP level is defined as a value of 35 ug/100ml or greater.

	Douglas	Bisbee	Safford
No. of Samples	. 145	115	121
Mean	13	12	14
Median	11	10	13
S. Deviation	9.8	8.8	15.6
Range	0 to 43	0 to 62	0 to 153

Total urine arsenic means and medians in all three communities were below the reported limits of detectability and, therefore, could not be calculated. Increased arsenic absorption is defined by a value equal to or greater than 50 ug/l. While this value approximates the 95% percentile of the normal population, normal values can range from

10-330 ug/l because of the marked effect of dietary arsenic on total urine arsenic. In the absence of mean and median values, the 95th percentile values for the three communities are presented below in ug/l.

	Douglas	Bisbee	Safford
No. of Samples	134	108	93
95th Percentile	49	. 68	49

Measured values that equaled or exceeded the 50 ug/l criteria are shown below in ug/l for the three communities.

Safford	Bisbee	Douglas
67	50	55
70	80	56
71	84	60
152	91	60
	103	130
	151	130

Because efforts were made to conduct the present study in a manner similar to that used in the CDC study of 1975, and because extensive efforts were made in the area of laboratory quality assurance testing, a valid comparison of the results from the two studies seemed justified for Douglas and Safford.

Lloyd F. Novick, M.D., M.P.H. Page -6-

Blood lead levels in ug/100ml are compared in the following table:

	Douglas		Safford	
	1975	1985	1975	1985
No. of Samples	97	114	92	106
Mean	20.5	13.1	15.3	9.3
Median	19.8	12.6	14.2	9.3
No. of Values Elevated *	15 ^a	0 _p	3ª	o_p
% of Values Elevated	15	0	3	0

^{*} The criteria for elevated levels of blood lead changed from 29.4 ug/100ml in 1975 to 25.0 ug/100ml in 1985.

a Values greater than 29.4 ug/100ml

b Values greater than 25.0 ug/100ml

Lloyd F. Novick, M.D., M.P.H. Page -7-

Blood ZnPP levels as EP equivalents in ug/100ml are compared in the following table:

	Doug	glas	Safford	
	1975	1985	1975	1985
No. of samples	97	145	92	121
Mean	30	13	23	14
Median	24	11	20	13
No. of values elevated *	16 ^a	7 ^b	5ª	3 _p
% of values elevated	16	5	5	2

^{*} The criteria for elevated levels of EP changed from 42.7 ug/100ml in 1975 to 35 ug/100ml in 1985

Elevated urine arsenic levels in ug/l are compared in in the following table:

	Douglas		Sa	afford
	1975	1985	1975	1985
No. of samples	80	134	61	93
No. of values elevated *	12	7	4	4
% of values elevated	15	5	7	4

^{*} For this comparison the criteria for elevated values was 45.5 ug/l for both 1975 and 1985.

a Values greater than 42.7 ug/100m1

b Values greater than 35 ug/100ml

()

In summary, the study of blood lead levels and urine arsenic levels conducted in the fall of 1985 shows little evidence of excessive exposure to these heavy metals in the communities of Douglas, Bisbee and Safford. Even with laboratory results that overstated the true values, only 4 of 335 blood samples exceeded the current CDC criteria for elevated blood lead of 25 ug/100ml and only 2, or 0.6%, the previous guidance level of 30 ug/100ml. By comparison, the Second National Health and Nutrition Examination Survey (NHANES II) estimated that during the 1976-1980 period, 3.9% of all U.S. children under 5 years of age had blood lead levels exceeding 30 ug/100ml. All 4 elevated levels were observed in Bisbee and 3 of the 4 originated in a circumscribed geographical area of that community. This finding suggests that an investigation of the environment in this area for possible sources of lead exposure is warranted.

The difference between the mean blood lead levels in Safford and Douglas was statistically significant, as was the difference between the Safford and Bisbee levels. The difference between the mean levels in Douglas and Bisbee was not statistically significant. While the effect of smelter emissions may have accounted for the higher mean blood lead level in Douglas, relative to Safford, these emissions should not have been a factor in the higher mean levels observed in Bisbee. Data collected by the CDC in populations living in smelter communities indicates that the effect of the emissions on blood lead levels is limited to a five-mile radius around a smelter. It may be worth looking for some common factor in Douglas and Bisbee, such as

Lloyd F. Novick, M.D., M.P.H. Page -9-

elevated soil lead levels, to explain the similarity in the mean blood lead levels of the two communities.

The decrease in blood lead levels in Safford and Douglas between 1975 and 1985 was expected. The NHANES II found that between 1976 and 1980, the overall mean blood lead levels dropped from 14.6 ug/100ml to 9.2 ug/100ml, and this corresponded with a decline in sales of leaded gasoline. As measured by ZnPP, a reduction in EP levels in both Safford and Douglas between 1975 and 1985 appeared to support the observed reduction in blood lead levels in these communities. However, the differences between the mean EP levels in the three study communities were not statistically significant. In view of the significant differences in mean blood lead levels mentioned above, the EP data suggested that the ZnPP technique is not sufficiently sensitive to measure such differences and should be used only as a screening procedure.

All urine arsenic levels from the 1985 study were within the normal range and reflect an expected statistical distribution having approximately 5% of the values falling above the 95th percentile for normal populations. Although mean values could not be calculated and compared with the 1975 values, the reduction in the percent of elevated values from 15 to 5 in Douglas and from 7 to 4 in Safford was suggestive of reduced arsenic exposure in both communities.

Lloyd F. Novick, M.D., M.P.H. Page -10-

All parents and, in those cases where requested, family physicians will be notified of the individual results obtained from specimens submitted by children in these three communities. The parents of the four children in Bisbee who showed elevated levels of blood lead will be advised to bring this information to the attention of their physicians.

NP:jb:cs

 $\label{eq:Appendix C} \mbox{\sc Analytical Results Of Soil Sampling By DDP}$

Evan Mecham, Governor Ted Williams, Director

ARIZONA DEPARTMENT OF HEALTH SERVICES

Division of Disease Prevention Office of Risk Assessment and Investigation 431 North 24th Street Ramada Hall Phoenix, Arizona 85008 (602) 255-1206

January 16, 1987

Carol Mordhorst, Director Cochise County Health Department P.O. Box 1858 Bisbee, Arizona 85603

Dear Carol:

Attached are the results of lead assays of soil samples collected from present or former smelter or ore processing sites in Cochise County. The list includes some values for Bisbee that were sent to you at an earlier date.

Our soil sampling experience in southern Arizona indicates that lead levels in surface soil from uncontaminated sites are typically less than 50 ug/g. Therefore, we would conclude that some of the samples from Bisbee, Benson, Willcox and Douglas show evidence of lead contamination. However, only Bisbee (17 of 75, or 23%) and Douglas (4 of 47, or 9%) showed levels in or above the 500 - 1000 ug/g range that the Centers for Disease Control state might influence blood lead levels in young children.

You will note that the 47 surface soil lead levels from Douglas ranged from 1170 ug/g to less than 50 ug/g with a median value of 196 ug/g. These levels were quite similar to the 75 Bisbee values which ranged from 1648 ug/g to less than 50 ug/g with a median value of 216 ug/g. By comparison, soil lead levels in 31 samples from Safford ranged from 102 ug/g to less than 50 ug/g with a median value of less than 50 ug/g. Only seven Safford samples were above the laboratory detection level of 50 ug/g.

You may recall that the mean and median blood lead levels in children from Bisbee and Douglas were comparable while the levels in Safford were approximately 3 ug/dl lower. While these correlations may suggest an association between lead

The Department of Health Services is An Equal Opportunity Affirmative Action Employer.

State Health Duilding

~ 10 777 . . .

January 13, 1987 Carol Mordhorst Page 2 levels in soil and blood, they do not necessarily demonstrate cause and effect. Accordingly, speculation concerning the interpretation of these data should be done with caution. The finding of four elevated blood lead levels in Bisbee and none in Douglas, a community with comparable soil lead levels, could be attributed to a higher prevalence of peeling leaded paint in Bisbee. Again, this explanation must be recognized as speculation. Mr. Beck plans to collect samples from sites at Johnson and Cochise to complete our Cochise County survey. We will forward the results to you when they become available. Sincerely, Marin Norman J. Petersen, Chief Office of Risk Assessment and Investigation NJP/ts Enclosure cc: Glyn G. Caldwell, M.D. John Beck

LEAD LEVELS IN SURFACE SOIL SAMPLES FROM SELECTED AREAS OF COCHISE COUNTY

Gen	eral Location	Soil Level ug/g
1.	Benson	
	McNeil and County Road	347
	Pearl and San Pedro	109
	Dragoon and Sixth	85
2.	Willcox	
	RR and Grant	<50
	RR and Stewart	156
	Maley and El Paso	94
	Fremont and Bisbee	<50
3.	Douglas	
	Landfill Road south of Prison	237
	Landfill Road south of K-Mart	58
	Landfill Road south of Clay Street	575
	Near Landfill	320
	Landfill Road at Ninth	237
	Two Blocks south of Ninth and Landfill Road	1170
	North of Waste Plant	322
	East of Waste Plant (500m)	283
	East of Waste Plant (1000m)	274
	East of Waste Plant (corral)	162
	East of Custom House	104
	First and E	211
	First and B	196
	Southwest of Calvary Cemetery	135
	Southeast of Calvary Cemetery	102
	South of Old Cemetery	99
	Fifth and B	145
	Ninth and A	186
	Thirteenth and A	349
	Eighteenth and A	434

3. <u>Douglas</u> - continued

General Location	Soil Level ug/g
Twenty-second and A	173
Twenty-first and Division	108
Twenty-second and Eddie	151
Twenty-second and Kline	74
Leslie Canyon and old RR grade	78
Leslie Canyon near Fairgrounds	<50
Leslie Canyon west of Fairgrounds	126
H and Sixteenth	161
Washington and Eighteenth	361
Washington and Pirtleville	175
North J and Pirtleville	188
Sulfur Springs and Pirtleville	208
Washington and Lawrence	144
North of Washington and Lawrence (500m)	<50
North of Washington and Lawrence (1000m)	239
Pirtleville and Cleveland	63
Pirtleville and Monroe	390
Pirtleville and 666 (eastside)	374
Pirtleville and 666 (westside)	599
Water Pump north of Smelter	320
West of Water Pump	421
North of Drive-In	301
North of Drive-In (500m west)	446
North of Drive-In (1250m west)	<50
Pirtleville Road near Clay	415
Landfill Road north of Ninth	512
Ninth and Florida	122
4. <u>Charleston</u>	
Highway and Railroad	60

Gen	meral Location	Soil Level ug/g
5.	Hereford	
	Highway and Northeast of River	50
6.	<u>Bisbee</u>	
	Old Bisbee, Quality Hill	1648
	Old Bisbee, Quality Hill	956 /
	Old Bisbee, Clauson Avenue	1385.
	Old Bisbee, Police Station	1111-
	Old Bisbee, Police Station	371 -
	Old Bisbee, Taylor	741 ·
	Old Bisbee, Tombstone Canyon	228_
	Old Bisbee, Tombstone Canyon	681
	Old Bisbee, Tombstone Canyon	455
	Old Bisbee, Tombstone Canyon	729
	Old Bisbee, Tombstone Canyon (Pace Park)	126
	Old Bisbee, Tombstone Canyon (Waterway)	238
	Old Bisbee, Tombstone Canyon (Near Locklin)	185
	Old Bisbee, Central	420
	Old Bisbee, Old Bisbee High	431
	Old Bisbee, Lower Brewery Gulch	502 ·
	Old Bisbee, Lower Brewery Gulch	407 -
	Old Bisbee, Lower Brewery Gulch	347 ι
	Old Bisbee, Brewery Gulch	452
	Old Bisbee, Brewery Gulch	397
	Old Bisbee, Brewery Gulch	550
	Old Bisbee, Brewery Gulch	415
	Old Bisbee, Brewery Gulch	663
	Old Bisbee, Brewery Gulch	270
	Old Bisbee, Quarry Canyon (Pool Park)	624
	Old Bisbee, Quarry Canyon (Dump Site)	920
	Old Bisbee, Quarry Canyon (Dump Site)	505 ⊁
	Bakerville	196
	Bakerville	483

6. <u>Bisbee</u> - continued

General Location	Soil Level ug/g
Bakerville	262
Bakerville	140
Bakerville	371
Warren	177
Warren	349
Warren	126
Warren	99
Warren	<50
Warren	51
Warren	121
Warren	234
Warren (Central)	335
Warren (Greenway)	<50
Warren (Ruppe)	55
Warren (Mills Field)	<50
Lowell (Waterway)	118
Lowell (School)	216
Galena	564
Galena	983 /
Briggs	276
South Bisbee	429
Tin Town	1200
Tin Town	185
Saginaw	180
Saginaw	120
Don Luis	64
Don Luis	296
Don Luis	210
San Jose	<50
San Jose	62

6. <u>Bisbee</u> - continued

General Location	Soil Level ug/g
San Jose	63
San Jose	54
Huachuca Terrace	74
Huachuca Terrace	56
Huachuca Terrace	171
Huachuca Terrace	168
Calle Cabo	71
Calle Cabo	101
Barnett Acres	72
Mt. View	.72
Sunset Acres	108
Sunset Acres	53
Sunset Acres	211
Sunset Acres	74
Terra Del Flores	125
Crestview	63

Appendix D

Data Validation Report For Soil Sampling By ADEQ

ICF KAISER ENGINEERS

JAN 0 5 1990

ICF KAISER ENGINEERS INC 160 SPEAR STREET SUITE 1380 SAN FRANCISCO CA 9410S 1535 415/957-0110

MEMORANDUM

SUBJECT:

Review of Analytical Data

FRCM:

Santiago Lee

ESAT Senior Organic Data Reviewer

ICF Kaiser Engineers, Inc.

THE OUGH:

David Bingham

Xand W. Kingham Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Tom Mix

Project Officer

Site Evaluation Section (H-8-1)

Attached are comments resulting from Region 9 review of the following analytical data:

> Phelps Dodge Douglas SITE:

EPA SITE ID NO:

LV924 Memos #2 and #2A CASE/SAS NO.:

Region IX, Las Vegas LABORATORY:

RAS metals analyses ANALYSIS:

22 soil samples. See Table 1A for details. SAMPLE NO.:

COLLECTION DATE: October 10 and 11, 1989

Santiago Lee, ICF Kaiser Engineers, Inc. REVIEWER:

TELEPHONE NUMBER: (415) 957-0110

If there are any questions, please contact the reviewer.

Attachment

Data Validation Report

Case No.:

LV924 Memos #2 and #2A

Site:

Phelps Dodge

Laboratory:

Region IX, Las Vegas

Reviewer:

Santiago Lee,

ESAT/ICF Kaiser Engineers, Inc.

22 Soil Samples for RAS Metals

Date:

December 27, 1989

I. Introduction

Region IX Laboratory in Las Vegas received twenty-two (22) soil samples on October 12, 1989 for RAS metals analyses. Sample numbers are LV924-305B, 315B, 335B, 345B, 355B, 365B, 375B, 385B, 395B, 405B, 415B, 425B, 435B, 445B, 455B, 46, 47, 48, 49, 50, 51, and 52. The samples were collected on October 10 and 11, 1989. Sample number LV924-435B is a background sample.

The analytical results with qualifications are presented in Table 1A. This document was prepared in accordance with EPA Contract Laboratory Program Inorganic Statement of Work for July 1987 and EPA document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses" (1985).

Validity and Comments II.

- The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Antimony, arsenic, cadmium, selenium, and zinc in all of the samples'

Matrix spike recovery results do not meet criteria for accuracy as listed below. The possible percent bias for each element is also presented below. Where the sample results for antimony, arsenic, cadmium, and zinc are above the method detection limit, the results are quantitatively questionable, could be biased low, and are the minimum concentration at which the parameter was present. Where the sample results for selenium are above the method detection limit, the results are quantitatively questionable, could be biased high, and are the maximum concentration at which the parameter was present. Where the sample results for antimony and selenium are undetected, the matrix spike recovery result shows a severe analytical deficiency and false negatives may exist.

<u>Parameter</u>	LV924-305 Soil % Recovery	LV924-305 Soil <u>% Bias</u>	LV924-46 Soil % Recovery	LV924-46 Soil <u>% Bias</u>
Antimony	45	-55	66	- 34
Arsenic			72	-28
Cadmium	72	- 28		
Selenium	180	+80		
Zinc			66	- 34

- B. The following results are considered usable for limited purposes because of precision problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Aluminium, barium, magnesium, and manganese in all of the samples

Laboratory duplicate results did not meet criteria (35%) for precision as listed below. The results are considered quantitatively questionable. The qualitative presence of the parameter was confirmed.

				LV924	4-46
				Lab:	Dup.
•				Soil	
<u>Parameter</u>				<u>RPD</u>	
			•		
Aluminium		٠	•	44	
Barium	•			37	
Magnesium		:		38	
Manganese				38	

- C. The results reported in Table IA for the following analytes are considered as estimates (J) and usable for limited purposes only.
 - All results above the method detection limit but below the contract required quantitation limit (denoted with an "L" qualifier)

Results above the method detection limit but below the contract required quantitation limit are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- D. The following results are considered usable for limited purposes due to possible contamination problems. The results are considered as suspects and reported as estimates with a "J" flag in Table 1A.
 - Chromium in sample numbers LV924-335B, 345B, 365B, 375B, 425B, 435B, 445B, 455B, and 50

These results were detected above the method detection limit and less than five times the highest laboratory blank. Laboratory blanks which were less than the contract required quantitation

limit and less than twice the method detection limit were not used to determine contamination problems.

- E. The following results are considered usable for limited purposes because of problems with the laboratory control sample (LCS). These results are considered as estimates and are flagged "J" in Table 1A.
 - Magnesium in all of the samples

The laboratory control sample did not meet criteria (80-120%) as listed below.

	Soil	Soil
<u>Parameter</u>	<pre>% Recovery</pre>	% Bias
Magnesium	126	+26

Where the sample results for magnesium are above the method detection limit, the results are quantitatively questionable, could be biased high, and are the maximum concentration at which the parameter was present.

- F. The following results are considered usable for limited purposes because of problems with the ICP serial dilution. These results are considered as estimates and are flagged "J" in Table 1A.
 - Calcium, lead, and zinc in all of the samples

The ICP serial dilution did not meet criteria (10% difference) as · listed below.

	LV924-305B
	Soil
<u>Parameter</u>	<pre>% Difference</pre>
	-
Calcium	11.2
Lead	11.7
Zinc	10.2

- G. Due to a laboratory contamination problem, the sample detection limit for mercury has been raised to 0.2 mg/Kg by the reviewer.
- H. The background sample, LV924-435B, had a number of parameters with concentration levels above the laboratory blanks.
- I. The 40 CFR 136 holding times do not apply as these samples are not waters. The mercury contractual holding time was exceeded for all samples by 17 days (43 days compared to the contract holding time of 26 days). This deficiency is not expected to affect the sample results significantly. There was no other holding time problem.

J. All other results are considered valid and usable for all purposes. All QC parameters, other than those discussed here, have been met and are considered acceptable. TABLE 4a
DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and quantitatively.

- U Indicates that the compounds is not detected above the concentration listed.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. The compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are <u>invalid</u> for all purposes.

Analysis Type: Soil Samples for RAS Metals

Case No.: LV924 Memos #2 and #2A

Site: Phelps Dodge

Lab.: Region IX, Las Vegas

Reviewer: Santiago Lee, ESAT/ICF Kaiser Engineers, Inc.

Date: December 27, 1989

Concentration in mg/Kg

Sample Location	1	-001	to	PDS-		,	PDS-0		•	-004 4-345	D	PDS- LV924		D	PDS LV92	-006 (-365	D	PDS- LV924		D	PDS- LV924		
Sample I.D.	LV92	4°30:	7B	LVY24	-315E		LVY24- 	3338	!	.4-343		LVYZ4 			LYY2				-3131		LVY24 	-30:	מי
Parameter	Result	Va	l Com.	Result	Val	Com.	Result	Val Co	n. Result	Val	Com.	Result	Val	Com.	ı Result	Val	Com.	Result	Val	Com.	Result	ľ	Com
Aluminium	11100	-	b	7910	 J	ь	2970	J b	4330	-	b	 16400		b	 3930	- J	b	4330		 b	22800	 4	- · · · ·
Antimony	7.7	υIJ	l a	8.3 t	•	а	6.1 U	Jla	6.8	ן וֹט	l a	6.6 U	j	l a	6.1	נ נע	a	6.2 L	ij	la,	11.2 L	15	Ta, c
Arsenic	57.5	J	a	32.0	- J	8	5.8	Jla	2.5	ijJ	l a	49.7	j	la	9.7	J	l a	5.5	J	а	19.9	J	la
Barium	85.2	j	i l b	154	J	b	52.7	J b	1 182	jj	, b	114	j	b	155	İJ	ļь	97.8	j	l b	349	ij	ĺЬ
Beryllium	1.0	LİJ	i c	I 1.1 l	. i J i	c	0.20 U	İ		L J	c	0.94 U	i	i	1.2	i	i	0.89 L	j	, I c	2.1	i	i
Cadmium	17.1	jj	la	14.0	jj	a	1.7	Jja	2.5	jj	, a	7.2	j	ja	2.9	ju	a	2.6	j	a	25.3	j	a
Calcium	159000	j	j f	117000	j J j	f	1340	JÍf	7760	jj	f	91300	J	f	1210	į	j f	828 L	J	c,f	32500	J	i I f
Chromium	22.2	i	i	28.9	i i		7.6	Jjd	10.4	jj.	jd	19.5	i	i	5.8	j	jd	8.6	J	l d	41.7	i	İ
Cobalt	30.5	i	ĺ	22.4	i i		2.0	Ì	17.4	ì	ĺ	12.0	Ì	ĺ	12.9	i	İ	10.0 L	j	c	15.5	i	í
Copper	9880	İ	į	9370	Ĺ		289	ĺ	296	İ	Ì	6120	İ	1	738	Ì	Ì	341	Ì	İ	7460	İ	i
Iron	35800		1	49500			18700	ĺ	24800	1	1	26100	1	1	12800	Ì	1	18500	1	1	44900	İ	1
Lead	856	J	f	3290	11	f	89.1	J f	1 179	J	f	426	J	f	123	J	f	113	J	f	3290	J	j f
Magnesium	8880]	b,e	10200	J	b,e	1880	J b,	2740	J	b,e	36100	J	b, e	1900	J	b, e	2560	J	b, e	12000	J	b,e
Manganese	3160	J	b	4460]	b	206	Jþ	1210	J	b	1140	J	b	1490	J	b	969	J	Ь	13900	1	j b
Mercury	0.41	1	1	0.45	1 1		0.20 0	9	0.35	1	1	1.1	1	}	0.20	וט	9	0.39	1	1	0.40	-	\
Nickel	36.0	1		37.7	1		6.1 U	!	12.2	İ	1	15.3]	1	15.6	1		10.0		1	87.1	ĺ	
Potassium	1140	L] J	C	1260 (С	742 L	JC	1990	1	1	1040 L	J	c	1170	1	}	1140	1		2070	ĺ	
Selenium	3.9	J	a	2.5	11	a	0.41 U	Ja	0.46	n .1	a	5.0	J	a	0.55	L J	a,c	J 0.41 U	J	a	1.9	11	a
Silver	6.5	l	1	7.0	1 1		1.0 U		1.3	L J	c '	5.3	1		1.0	U	1	1.0 U		i	9.2	1	T
Sodium	455	L J	C	429 1		С	317 L	J c	509	LĮj	c	416 L]	c	305 (L J	c	297 L	J	c	367 L	J] c
Thall iu m	0.69	L J	C	0.75 L		С	0.41 U	1	0.46	ul .	1	0.44 U	1	1	0.41 (۱	1	j 0.41 u	1		0.43 U	1	j
/anadium	18.8	1	1	50.7	1 1]	6.2 L	J c	7.6	L J	c	23.6		1	4.9 1	LJ	c	5.3 L	[J]	c	68.1	1	1
Zinc	978	J	a,f	1570	111	a,f	63.7	J a,	156	11.	a,f	496]	a,f	202	J	a,f	127]]	a,f	2720	1	a,f
]	1	1	1		1	1	1	1 .			l		1	Ī	1	1	!				[1
Percent Solids	78.2	1	!	72.3	1 1	!	98.6	1	87.7	1		91.2			97.6	1	1	97.0] [i 1	93.3		1

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Marrative for each letter.

IDL:Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank; BG-Background
CRQL-Contract Required Quantitation Limit

Analysis Type: Soil Samples for RAS Metals

Case No.: LV924 Memos #2 and #2A

Site: Phelps Dodge

Lab.: Region IX, Las Vegas

Reviewer: Santiago Lee, ESAT/ICF Kaiser Engineers, Inc.

Date: December 27, 1989

Concentration in mg/Kg

							•••••	
Sample Location	PDS-009	PDS-010	PDS-011	PDS-012	PDS-013	PDS-014	PDS-015	PDS-016
Sample 1.D.	LV924-395B	LV924-405B	LV924-415B	LV924-4258	LV924-435B BG	LV924-445B	LV924-455B	LV924-46
Parameter	Result Val Com.	Result Val Com.	Result Val Com.	Result . Val Com.	Result Val Com.	Result Val Com.	Result Val Com.	Result Va xm.
Aluminium	11200 J b	10400 J b	20900 J b	5230 J b	5960 J b	4430 J b	4060 J b	7780 J
Antimony	12.2 L J a,c	6.7 U J a	6.6 U J a	7.0 U J a	6.7 U J a	6.8 U J a	7.2 U J a	6.4 U J a
Arsenic	19.3 J a	9.0 J a	5.6 J a	4.1 J a	1.5 L J a,c	1.8 L J a,c	8.1 J a	13.0 J a
Barium	130 J b	250 J b	169 J b	115 J b	91.2 J b	92.2 J b	102 [Ј [Б	153 J b
Beryllium	1.1	1.4	2.1	0.65 L J C	0.85 L J C	1.0 L J C	1.2	1.0 L J C
Cadmium	11.1 J a	13.3 J a	6.6 J a	2.0 J a	2.0 J a	1.3 J a	1.3 J a	5.0 J a
Calcium	111000 J f	45600 J f	52200 J f	1990 : J f	773 L J [c,f]	642 L J c,f	471 L J c,f	1930 J f
Chromium	20.3	22.7	30.4	8.0. j j d	i 10.5 julid i	9.4 J d	5.6 J d	14.9
Cobalt	8.6 L J c	12.6	13.4	6.0 L J C	11.3	7.3 L J C	6.3 L J C	14.3
Copper	3190	863	2020	364	56.3	70.8	305	370
Iron	42100	22900	30000	10700	16100	15600	14400	19300
Lead	4590 J f	737 J f	598 J f	58.6 J f	49.1 J f	69.5 J f	148 J f	263 J f
Magnesium	25100 J b,e	5870 J b,e	32500 J b,e	2120 J b,e	3200 J b,e	1860 J b,e	1740 J b,e	3490 J b,e
Manganese	7820 J b	11700 J b	12100 J b	2140 J b	1400 J b	991 J b	976 J b	3110 J L b
Mercury	0.54	0.22 U g	0.22 U g	0.23 U g	0.22 U . g	0.23 U g	0.24 U g	0.21 0
Nickel	43.5	69.8	71.9	16.2 .	16.4	9.1	7.2 U	20.5
Potassium	1460	2200	3060	2020	1310	1610	1500	2290
Selenium	0.62 L J a,c	0.45 U J a	0.66 L J a,c	0.46 U J a	0.45 U J a	0.45 U J a	0.48 U J a	0.56 L J a,c
Silver	12.8	4.9	5.0	1.2 L J c	1.1 0	1.1 0	1.2 U	2.1
Sodium	374 L J c	387 L J c	316 L J C	413 L J c	351 L J c	352 L J c	326 L J c	355 L J C
Thallium	0.43 U	0.45 U	0.44 U	0.46 U	0.45 U	0.45 U	0.48 U	0.43 U
Vanadium	40.2	42.9	42.7	8.4 L J c	5.4 L J c	9.0 L J c	5.1 L J c	13.8
Zinc	1520 J a,f	834 J a,f	800 J a,f	71.3 J a,f	117 J a,f	61.4 J a,f	72.9 J a,f	198 J a,f
••						1 1		
Percent Solids	93.6	89.8	90.6	86.3 -	89.2	88.7	83.7	93.2

Val-Validity Refer to Data Qualifiers in Table 18.

Com.-Comments Refer to the Corresponding Section in the Narrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank; BG-Background CRQL-Contract Required Quantitation Limit

Analysis Type: Soil Samples for RAS Metals

ANALYTICAL RESULTS TABLE 1A

Case No.: LV924 Memos #2 and #2A

Site: Phelps Dodge

Lab.: Region IX, Las Vegas

Reviewer: Santiago Lee, ESAT/ICF Kaiser Engineers, Inc.

Date: December 27, 1989

Concentration in mg/Kg

								•••••
Sample Location	PDS-017	PDS-018	PDS-019	PDS-020	PDS-021	PDS-022	Method Blank	Method Blank
Sample I.D.	LV924-47	LV924-48	LV924-49	LV924-50 ·	LV924-51	LV924-52	Lab Blank 1	Lab Blank 2
Parameter	Result Val Com.	Result Val Com.	Result Val Com.	Result Val Com.	Result Val Com.	Result Val Com.	Result Val Com.	Result Va n.
Aluminium	19500 J b	14500 J b	9970 J b	4740 J b	9800 J b	5720 J b	18.3 L J c	13.7 L J
Antimony	1 6.5 Ul J l a	1 6.5 Ul J l a	1 7.1 Ul J l a	6.5 Ul J l a	1 10.6 Ul J l a	6.1 Ul J la	6.0 UI	6.0 U
Arsenic	6.0 J a	10.8 J a	22.7 J a	1 16.4 1 J l a	43.3 J a	12.0 J a	0.40 U	0.40 U
8arium	1 176 J b	111 J b	315 J b	111 J b		98.5 J b	1.0 u	1.0 0
Beryllium	2.9	1 1.7	0.83 L J C	0.93 L J c	0.78 L J c	0.65 L J C	0.20 ul	0.20 U
Cadmium	1.5 J a	4.1 J a	4.8 J a	3.3 J a	19.5 J a	0.05 L 3 6 1.5 3 a	1.0 U	0.20 0 1.0 U
Calcium	5410 J f	65800 J f	1 55700 J f	3060 J f	17.5 5 a 55300 J f	1010 L J c,f	1.00 85.9 L J c	1.0 U 40.0 U
Chromium	23.7	23.9	1 19.2	8.5 J d	21.6	12.9		40.00
Cobalt	18.4	1 13.6 1	7.7 L J C	17.2	1 21.0	7.6 L J c	1.5 L J c 2.0 U	2.4 2.0 U
Copper	78.3	631	1 624 1 1	1 767 1 1	7170	7.0 L 3 C 512		2.00 1.00
Iron	33200	31400	22100	20700	7170 33900	1 17700 1	3.8 L J c 10 U	
Lead	134 J J f	1 264 J f	1 828 J f	1 187 J f	1 1240 J f	1700 188 J f	ן 10 טן	12.8 L J c 10 U
Magnesium	24500 J b,e	16500 J b,e	1 11100 J b,e	2910 J b,e	9220 J b,e	2650 J b,e	40.0 U	10 U 40.0 U 1
Manganese	2640 J b	1830 J b	5160 J b	2710 3 b, e 1640 J b	4220 J D, e	2030 J B, e 1150 J b	7.1	! ! !
-			1 0.39 1		0.67		• • •	2.1 L J c
Mercury Nickel	0.22 U g	0.22 U g	1 35.0	0.22 U g 14.0	0.67 33.9	0.20 U g 13.2	0.15 U	0.15 U —
	2230	1 1320 1	1 2340	1 1520	!!!!	1 1480	6.0 0	6.0 0
Potassium Selenium		, , ,	• • •	! ! ! !	1620 L J c		20.0 U	20.0 U
	0.43 U J a	0.63 L J a,c	0.69 L J a,c		4.6 J a	0.41 U J a	0.40 U	0.40 U
Silver	1.1 U	3.2	2.6	1.1 U	5.3	1.0 U	1.6 L J c	1.0 0
Sodium	311 L J C	426 L J c	390 L J c	317 L J c	734 L J c	307 L J C	20.0 u	20.0 0
Thallium	0.43 U	0.44 U	0.48 U	0.43 U	0.85 L J c	0.41 U	0.40 U	0.40 U
Vanadium	23.0	18.9	27.6	5.7 L J c	25.7	16.4	1.0 U	1.0 0
Zinc	594 J a,f	344 J a,f	670 J a,f	208 J a,f	1270 J a,f	182 J a,f	1.3 L J c	1.2 L J c
Panant Callda	1 07 0 1							
Percent Solids	93.0	91.8	84.0	92.7	56.5	98.6		•••

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Marrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2; etc.-Field Duplicate Pairs

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank; BG-Background CRQL-Contract Required Quantitation Limit

Analysis Type: Soil Samples for RAS Motals

Case No.: LV924 Memos #2 and #2A

Site: Phelps Dodge

Lab.: Region IX, Las Vegas

Reviewer: Santiago Lee, ESAT/ICF Kaiser Engineers, Inc.

Date: December 27, 1989

Concentration in mg/Kg

								•••••						• • • • • • • •		•	• • • • • • • • •			•••••			• • • • • • • • •			
	Sample Location]			1			!		1			1			į				1		1			1	İ
	Sample 1.D.	MC)L		CRG)L				. 1										 					. !	
•	Parameter	Result	Val	Com.	Result	Val	Com.	Result	Val Con	n. Resi	ult [V	al C	om. [Result	Val	[Com.	Result	Val	Com.	Result	Val	Com.	Result	įva	n. 	
	Aluminium	1.0]	40.0	i]		ii	i	i	i	i		İ				İ	! 		, , 		ii		i
	Antimony	6.0	ĺ	1	12.0	İ	İ		İ	1	Ì	ĺ	Í		ĺ	i i		i]		Ì	i i		i 1		l
	Arsenic	0.40	İ	į	2.0	ĺ	İ		i	1	ĺ	ĺ	1		1	İ		Ī	ĺ		ĺ	i i		i	į į	l
	Barium	1.0	İ	(40.0	ĺ	İ		İ	İ	İ	Ì	1		İ	İ		İ	•		Ì			i	, ;	ĺ
	Beryllium	0.20	j	i i	1.0	ĺ	İ		ii	Ì	· j.	į	ĺ		j	İ		į .	ļ		į	i i		i		ĺ
	Cadmium	1.0	İ		1.0	ĺ			1 1	1	i	Ì	İ		İ	İ		j			Ì			1	1	l
	Calcium	40.0	Ì		1000	İ		İ	1 1				1		1			ĺ			İ	i i		i	j i	l
	Chromium	1.0	1	1 1	2.0	1			1 1	1	1	1	I		1	1 1		1	ļ		1	1		1	1	
	Cobalt	2.0	1		10.0	1			1 1	1			1		1			1		<u> </u>	1			1	j j	1
	Copper	1.0			5.0	1		İ	1 1			\cdot														l
	Iron	10	1		20.0	1	1		1 1	1	1	1			ĺ	[]		1			1			1		l
	Lead	10	1	1 1	1.0	1	1	ľ	1 1	1	1	- (1		1	1 1		1	1		1	1 1		1	1 1	ĺ
	Magnesium	40.0	1		1000	1	1 1	İ	1 1	i	1	1	1	•	1				1					1	1 !	ı
	Manganese	1.0	1		3.0																1			1	1 1	
	Mercury	0.10	1		0.10	1			1 1	1	İ	1	1		1	1 1		1			1	1		j '		
	Nickel	6.0	1		8.0	1			1 1	1					ļ			1						1 1	l İ	
	Potassium	20.0	1	[1000	1	1		1	1	.1		i		1			1			1	1 1		1		
	Selenium	0.40			1.0	1			1 1		1	1	ľ								1			1		
	Silver	1.0		1 1	2.0				1 1	1	1	Į	l		{			1		ı				1 1	1	
	Sodium	20.0	1	1 1	1000	1	!!			1	ſ	- 1	- 1					1		ı				1 1		
	Thallium	0.40	1		2.0					1	1	1	- 1											1 1	i [
	Vanadium]	1.0	1		10.0						1		٠ ا											1 1	.]	
	Zinc	1.0	1		4.0	1 1		l i				1	1			li								1 1	- 1	
			1] !				!	!	ļ	. 1			!			!!						1	
	Percent Solids	•••	1 .			1 1				ł	1.	1.	- 1		1 1			1 1	1					1 1	I	

Val-Validity Refer to Data Qualifiers in Table 1B.

Com.-Comments Refer to the Corresponding Section in the Marrative for each letter.

IDL-Instrument Detection Limit for Waters, MDL-Method Detection Limit for Soils

D1, D2, etc.-Field Duplicate Pairs
FB-Field Blank, EB-Equipment Blank, TB-Travel Blank; BG-Background
CRQL-Contract Required Quantitation Limit

DPO:	[] ACTION [X] FYI INORGANIC REGIONAL	DATA ASS	ESSMENT		Region <u>IX</u>
CASE	NO. <u>LV924 Memos #2 and #2A</u> LABO	RATORY	Region	IX, Las	Vegas
SDG	NO. <u>LV924-305B</u> DATA	USER _			, <u> </u>
sow	REVI	EW COMPLE	TION DAT	E <u>Decem</u>	ber 28. 1989
OII	OF SAMPLES WATER S	oir		ER	
REVI	EWER [] ESD [X] ESAT [] OTHER,	CONTRACT	/CONTRAC	TOR	
		ICP	AA	Hg	Cyanide
1	HOLDING TIMES	o		<u> </u>	
2	INITIAL CALIBRATIONS	0	0	0	
3.	CONTINUING CALIBRATIONS		0	0	
4	FIELD BLANKS ("F" = not applicable)	<u> </u>	<u>F</u>	F	
5.	LABORATORY BLANKS	X	0	<u> X</u>	
6.	ICS				
7.	LCS	<u> </u>			
8.	DUPLICATE ANALYSIS	<u> </u>	0	0	
9.	MATRIX SPIKE	<u> </u>	<u>X</u>	0	
10.	MSA		0		
11.	SERIAL DILUTION	X			
12.	SAMPLE VERIFICATION	0	0	0	
13.	REGIONAL QC ("F" - not applicable)	F	<u> </u>	<u> </u>	
14.	OVERALL ASSESSMENT	<u>M</u>	<u> </u>	0	
	No problems or minor problems that d No more than about 5% of the data po or unusable.				-
	More than about 5% of the data point More than about 5% of the data point	-			
	ACTION ITEMS:				

AREAS OF CONCERN: Some of the ICP matrix spike, duplicate analysis, LCS, and serial dilution results were outside the acceptable criteria.

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	LESC			-	Con	tract:	68-03-3	249		
Lab	Code:	LESC	Case	No.:	LV924	SAS	No.:		SDG	No.:LV924-30	5B
Init	cial Ca	alibration	n Source:	UN	LV,NBS,	INT					
Cont	tinuin:	d Calibrat	tion Source:	: IN	TERNAL						

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found		True	Continuir Found			%R(1)
Aluminum_								
Antimony_					_4952.15	_99.0		
Arsenic				50.0	46.60	_93.2	48.60	_97.2
Barium								
Beryllium								
Cadmium				5000.0	_4996.57	100.0		<u>.</u>
Calcium]
Chromium_								l
Cobalt								
Copper		· · · · · · · · · · · · · · · · · · ·						
Iron							•••	1
Lead								
Magnesium							<u> </u>	
Manganese						i		l
Mercury								<u></u>
Nickel			I					
Potassium								
Selenium_				50.0	53.20	106.4		1
Silver			·					
Sodium			·					
Thallium_			·\	25.0	-23.30	_93.2		
Vanadium_		1000	.	5000		1		I
Zinc				5000.0	_5023.32	100.4		
Cyanide			.					
			.11	l	l	I	l	l

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC	Contract: 6	8-03-3249
Lab Code: LESC Case No	o.: LV924 SAS No.:	SDG No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, INT	
Continuing Calibration Source:	TNTERNAT.	

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continui: Found	ng Cali! %R(1)	bration Found	%R(1)
Aluminun_ Antimony_ Arsenic Barium	100.0	101.90	101.9	50.0	51.80	103.6	53.60	107.2
Beryllium Cadmium								
Calcium Chromiun_ Cobalt		•			•			
Copper								
Lead Magnesium Manganese								<u> </u>
Mercury Nickel								
Potassium Selenium_ Silver	100.0	103.70	103.7	50.0	53.70	107.4	48.90	97.8
Sodium Thallium_								
Vanadium_ Zinc Cyanide								

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC	Contract:	68-03-3249
Lab Code: LESC Case N	o.: LV924 SAS No.:	SDG No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, INT	
Continuing Calibration Source:	INTERNAL	

Concentration Units: ug/L

Analyte	Initial True	Calibr Found		True	Continuir Found	ng Cali %R(1)	%R(1)
Aluminum_							
Antimony_			.				 -
Arsenic			.	50.0	52.90	105.8	 .
Barium							 .]
Beryllium			.11				 .
Cadmium	·		_				 .
Calcium	<u> </u>					l1.	
Chromium_							 _ []
Cobalt							.
Copper							
Iron				•			
Lead						11	.
Magnesium							
Manganese		•					_
Mercury					-		_
Nickel							_
Potassium							_ [
Selenium_				50.0	52.70	105.4	_
Silver						11	
Sodium							
Thallium_							
Vanadium_							
Zinc		*****					
Cyanide							
							-

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	LESC			Contract:	68-03-32	249
Lab Code:	LESC	Case No	.: LV924	SAS No.:		SDG No.:LV924-305B
Initial Ca	alibration Sour	ce:	UNLV, NBS, IN	1 T		
Continuir	g Calibration S	ource:	INTERNAL			

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)
Analyce	rrue	round	PV(T)	True	round	OL(T)	round	917(1)
Aluminum								
Antimony							, , , , , , , , , , , , , , , , , , ,	
Arsenic	100.0	100.30	100.3	50.0	49.40	98.8	50.10	100.2
Barium						-		
Beryllium								
Cadmium								
Calcium		•						
Chromium_	•					· .		
Cobalt								
Copper								
Iron								
Lead			•					
Magnesium		•						
Manganese								
Mercury								
Nickel				-				
Potassium								
Selenium_	100.0	101.30	101.3	50.0_	49.20	_98.4	49.40	_98.8
Silver								
Sodium						l		
Thallium_						l		
Vanadium_						\		
Zinc								
Cyanide						ll		
			1			}		1

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC	Contrac	t: 68-03-3249	
Lab Code: LESC Case No	o.: LV924 SAS No.	: SDG	No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, INT		
Continuing Calibration Source:	INTERNAL		

Concentration Units: ug/L

	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	
Aluminum_						[[
Antimony_									
Arsenic				50.0	50.60	101.2	54.90	109.8	
Barium									
Beryllium					-				
Cadmium									
Calcium							•	•	
Chromium									
Cobalt -									
Copper						1			
Iron									
Lead									
Magnesium									
Manganese									
Mercury									
Nickel						\			
Potassium									
Selenium				-					
Silver			-						
Sodium			-						
Thallium		,							
Vanadium -									
Zinc			-		-				
Cyanide			-		-				

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC	Contract: 68-03	3-3249
Lab Code: LESC Case No	o.: LV924 SAS No.:	SDG No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, INT	
Continuing Calibration Source:	ΤΝΨΕΌΝΑΙ	

Concentration Units: ug/L

1			· · · · · · · · · · · · · · · · · · ·				<u> </u>	
	Initia	l Calibra	ation		Continuir	ng Cali	bration	
Analyte	True	Found	%R(1)	True	Found	∛R(1)	Found	%R(1)
Aluminum_								
Antimony_								
Arsenic	100.0	110.30	110.3	50.0	51.90	103.8	51.20	102.4
Barium								
Beryllium								
Cadmium								
Calcium			·	<u> </u>				
Chromium_								<u> </u>
Cobalt		<u> </u>						
Copper	·							
Iron								
Lead								
Magnesium								
Manganese								
Mercury								
Nickel								
Potassium								l
Selenium_								
Silver								
Sodium								
Thallium_								
Vanadium_								
Zinc								
Cyanide								
Arsenic 8	100.0	100.60	100.6	50.0	48.40	96.8	50.50	101.0
Arsenic 9	100.0	104.30	1	50.0	50.20	$\overline{1}00.4$		101.2

2B CRDL STANDARD FOR AA AND ICP

ab Name: LESC		Contract:	68-03-3249	
Lab Code: LESC Cas	se No.: LV924	SAS No.:	SDG	No.:LV924-305E
AA CRDL Standard Source:	INTERNAL			
CP CRDL Standard Source:	INTERNAL			

:	···		•	1				
	CRDL S	standard fo	or AA		CRDL Star	ndard 1	for ICP	
			1		Initial		Final	Ļ
Analyte	True	Found	%R	True	Found	%R	Found	%R
Aluminum_				400.0	439.40	109.8	434.80	_108.7
Antimony_				120.0	120.90	100.8	135.80	_113.2
Arsenic	10.0	10.20	_102.0					
Barium				200.0	202.80	101.4	202.00	_101.0
Beryllium				10.0	10.20	102.0	10.10	_101.0
Cadmium				10.0	11.70	117.0	10.60	_106.0
Calcium				10000.0	_10141.40	101.4	_10013.30	_100.1
Chromiun_				20.0	21.00	105.0	23.70	_118.5
Cobalt				100.0	109.50			_113.5
Copper				50.0	51.60	103.2	51.30	_102.6
Iron				200.0	127.20	· —	253.20	_126.6
Lead				100.0	134.80		94.50	94.5
Magnesium				10000.0	_10700.50	107.0	_10682.40	_106.8
Manganese				30.0	34.10	113.7	34.70	_115.7
Mercury		-						
Nickel				80.0	60.30		70.90	
Potassium				10000.0	9977.10	99.8	9809.90	98.1
Selenium_	5.0	4.60	92.0					
Silver				20.0	21.90	109.5	22.20	_111.0
Sodium				10000.0	9950.00	_99.5	9749.50	97.5
Thallium_	10.0	9.40	94.0					
Vanadium_				100.0	102.40	102.4	103.70	_103.7
Zinc				40.0	42.90	107.2	43.60	_109.0

2B CRDL STANDARD FOR AA AND ICP

ab Name: LESC		Contract: 68-0	03-3249
ab Code: LESC	Case No.: LV924	SAS No.:	SDG No.:LV924-305E
A CRDL Standard	Source: INTERNAL		
CP CRDL Standard	Source: INTERNAL		

	CRDL S	tandard fo	or AA	CRDL Standard for ICP Initial Final						
Analyte	True	Found	%R	True	Found	%R	Found	%R		
Aluminun_ Antimony_ Arsenic Barium	10.0	8.50	85.0	120.0	121.89_	101.6	134.11_	111.8_		
Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium				10.0	7.04		6.38	_63.8_		
Manganese Mercury Nickel Potassium Selenium_ Silver Sodium Thallium_ Vanadium_ Zinc	5.0	5.90		40.0	43.54_	108.9	43.25	108.1_		

2B CRDL STANDARD FOR AA AND ICP

Lab Name: LESC		Contract:	68-03-3	249
ab Code: LESC Cas	se No.: LV924	SAS No.:		SDG No.:LV924-305B
A CRDL Standard Source:	INTERNAL			
CP CRDL Standard Source:	INTERNAL			

	CRDL S	tandard fo	or AA
Analyte	True	Found	%R
Aluminum_			
Antimony_			
Arsenic	10.0	9.20	92.0
Barium			
Beryllium			
Cadmium			
Calcium		•	
Chromium_			
Cobalt	•		
Copper			
Iron			
Magnesiun			
Manganese			
Mercury			
Nickel			
Potassium			
Selenium	5.0	3.80	76.0
Silver			
Sodium			
Thallium	10.0	10.60	106.0
Vanadium_		,	
Zinc			

2B CRDL STANDARD FOR AA AND ICP

Lab Name	E: LESC		Contract: 68-03	-3249
Lab Code	E: LESC	Case No.: LV924	SAS No.:	SDG No.:LV924-305E
AA CRDL	Standard Source	ce: INTERNAL		
ICP CRD	Standard Sour	rce:		

Analyte	CRDL S	Standard fo	or AA %R	True	CRDL Star Initial Found	ndard f %R	for ICP Final Found	- %R
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_ManganeseMercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Marenic_Sinc_Marenic_Sodium_Thallium_Vanadium_Zinc_Marenic_Marenic_Sodium_Thallium_Vanadium_Zinc_Marenic	10.0							

2B CRDL STANDARD FOR AA AND ICP

Lab Name: LES	C	· · · · · · · · · · · · · · · · · · ·	Contract:	68-03-3249	
Lab Code: LES	C Case	e No.: LV924	SAS No.:	SDG	No.:LV924-305B
AA CRDL Stand	ard Source:	INTERNAL			
ICP CRDL Stan	dard Source:				

	CRDL St	andard fo	r AA		CRDL Star	ndard 1	for ICP Final	L
Analyte	True	Found	%R	True	Found	%R	Found	8
Aluminum						1		
Antimony_		-						
Arsenic -	10.0	9.60	96.0					
Barium			_					
Beryllium								
Cadmium								
Calcium								\
Chromium_								l
Cobalt								
Copper					#1.4. · · · · · · · · · · · · · · · · · ·			
Iron								
Lead								ļ
Magnesi'um								
Manganese	-							l —
Mercury						·]		 —
Nickel Potassium				ļ				
Selenium	5.0	3.90	78.0	 		·		
Silver	⁵ •0 -	3.90	′°••	 		.		
Sodium	-	· · · · · · · · · · · · · · · · · · ·						
Thallium						·		
Vanadium_				<u> </u>				-
Zinc	-					-		
					l	·		

2B CRDL STANDARD FOR AA AND ICP

Lab Name: LESC		Contract: 68-0	3-3249
Lab Code: LESC	Case No.: LV924	SAS No.:	_ SDG No.:LV924-305E
AA CRDL Standard Sour	ce: INTERNAL		
ICP CRDL Standard Sou	rce:		

	CRDL St	candard fo	or AA
Analyte	True	Found	%R
Aluminum			
Antimony			
Arsenic	10.0	10.60	_106.0
Barium			
Beryllium			
Cadmium			
Calcium Chromium			
Cobalt Cobalt	<u></u>]-		
Copper Copper			
Iron			
Lead			
Magnesium			
Manganese			
Mercury		-	
Nickel			
Potassium			·
Selenium_			
Silver Sodium			
Thallium			
Vanadium			
Zinc			
Arsenic 8	10.0	12.40	124.0
Arsenic 9	10.0	8.90	

3 BLANKS

Lab	Name:	LESC	Contract:	68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	С	Conti		uing Calib ank (ug/L) 2		cion 3	С	Prepa- ration Blank C	M
Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromiun_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Cyanide_	5.2 30.0 2.0 5.0 1.0 5.0 200.0 5.0 10.0 5.0 200.0 5.0 0.2 30.0 100.0 2.0 5.0 100.0 2.0 5.0	_ מממממממממממממממ	57.4 30.0 2.0 5.0 1.0 5.0 200.0 5.0 10.0 5.0 200.0 50.0 200.0 5.0 0.2 30.0 100.0 2.0 5.0 5.0	ם טטטטטטטטטטטטטטטטטטטטטטט	5.0 30.0 2.0 5.0 1.0 5.0 200.0 5.0 10.0 5.0 -61.8 50.0 200.0 5.0 0.2 30.0 100.0 2.0 5.0 100.0 5.0	מטטטטטטטטטטטטטטטטטטטטטטט	12.4 30.0 2.0 5.0 1.0 5.0 200.0 5.0 10.0 5.1 50.0 200.0 5.8 0.2 30.0 100.0 2.0 5.3 100.0 2.0 5.0 5.0	800000000000000000000000000000000000000	18.320 B 6.000 U 0.400 U 1.000 U 1.000 U 1.000 U 85.860 B 1.460 B 2.000 U 3.840 B 10.000 U 40.000 U 7.080 D 7.080 D 0.150 U 6.000 U 20.000 U 1.560 B 20.000 U 1.560 B 20.000 U 1.340 B	P P P P P P P P P P P P P P P P P P P

3 BLANKS

Lan	Name.	LESC		contract:	68-03-3249
T - 1-	0-4	TDGG	C X XXIOO4	ana w-	and No attion

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	Initial Calib. Blank (ug/L) 2.0	C	1 8.230.02.05.01.05.05.010.05.050.050.050.0_	BI BUUUUUUUUUUUUUUUUUUUU	sing Calibrate (ug/L) 2 5.030.05.05.05.05.05.050.050.050.050.0_	ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	3	וממממממממן מש	Prepa- ration Blank C 13.740 B 6.000 U 0.400 U 1.000 U 1.000 U 40.000 U 2.380 _ 2.000 U 1.000 U 1.000 U 1.000 U	M M
Bervllium		-1-1		, ,		U		U	0.200 U	P
		- -		1 - 1		U		1	1	P .
· —— ·		- -		U		U		Ū	·	P
Chromium		- -		U		U		บ	2.380	P
Cobalt		1-1	10.0	ט	10.0	U		บ	2.000 0	P
Copper		- -	5.0	U	5.0	ប	5.0	บ	1.000 U	P
Tron	•	1-1	50.0	U	50.0	U		U	12.840 B	P
Lead				U	50.0	U	50.0	U	10.000 U	P
Magnesium			200.0_	U	200.0	U	200.0	U	40.000 U	P
Manganese		. _	5.0_	บ	5.0_	บ	5.0_	U	2.060 B	P
Mercury		. _		_		_		_	0.150 U	AV_
Nickel		-1-1	30.0_	U	30.0_	Ū	30.0_	บิ	7.620 B	P
Potassium		- _	100.0_	U	100.0_	ប	100.0_	U	20.000 U	P
Selenium_	2.0	_ [ប	2.0_	U	2.0_	ប	2.0_	U	0.400 U	F
Silver		- -	5.0	U	5.0_	U	5.0_	U	1.000 U	P
Sodium		- -	100.0_	U	100.0_	U	100.0_	U	20.000 U	P
Thallium_	2.0_	ַ ט	2.0_	U	2.0_	U	2.0_	U	0.400 U	F
Vanadium_		- -	5.0_	U	5.0_	U	5.0_	U	1.000 U	P
Zinc		-	5.0_	U	5.0_	ប	5.0_	U	1.160 B	P
Cyanide		-		-		-		-		NR

Lab Na	ame:	LESC		Contract:	68-03-3249	
Lab Co	ode:	LESC	Case No.: LV924	SAS No.:	SDG	No.:LV924-305E
Prepai	ratio	n Blank Matr	ix (soil/water): _			
Prepai	ratio	on Blank Conc	entration Units (uc	g/L or mg/kg):	

Aluminum 30.0 U 30.0 U 30.0 U 30.0 U NR P F	Analyte	Initial Calib. Blank	C		Bl	uing Calibu Lank (ug/L)	;		Prepa- ration	M
NR Cadmium	Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_		שו – שו – ו – ו חוד שו ח	2.0	C	2 		 U		

Lab Name	: LESC_		Con	tract:	68-03-3249	
Lab Code	: LESC_	_ Case No.: LV	7924 SAS	No.:	SDG	No.:LV924-305E
Preparat	ion Bla	nk Matrix (soil/water	c):			
Preparat	ion Bla	nk Concentration Unit	s (ug/L or	ma/ka):	

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1		uing Calibu Lank (ug/L) 2			Prepa- ration Blank C	М
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc_ Cyanide_				<u> </u>		מ מ ם מ ם			NR

Lab Name: LESC		Contract:	68-03-3249	
Lab Code: LESC	Case No.: LV924	SAS No.:	SDG	No.:LV924-305B
Preparation Blank Ma	atrix (soil/water):			
Preparation Blank Co	oncentration Units (uq	L or mg/kg):	

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1	nı Bl	ing Calib Lank (ug/L) 2	rat) C	С	Prepa- ration Blank C M
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium Vanadium_ Zinc_ Cyanide_		- - - - - - - - - - -				- - - - - - - - - - - - - - - - - - -		NR NR NR F NR NR NR NR

Lab Name:	LESC		Contract: 68-	03-3249	
Lab Code:	LESC	Case No.: LV924	SAS No.:	SDG 1	No.:LV924-305B
Preparation	on Blank Matr	ix (soil/water): _			
Preparation	on Blank Conc	entration Units (u	g/L or mg/kg):		

								T	11	- ,
Analyte	Initial Calib. Blank (ug/L)	С	Conti		uing Calib Lank (ug/L 2		cion 3	С	Prepa- ration Blank C M	
Aluminum						1			$\left \cdot \right = \left \cdot \right _{NR}$	-
Antimony		-				-		-	NR	(
Arsenic	2.0	ប	2.0	ប	2.0	ਹ	2.0	ប	- F	-
Barium						ľ			- NR	_
Beryllium		-		_		-		-	NR	_
Cadmium		-		_		-		-	NR NR	_
Calcium		-		_		-		-	NR NR	
Chromium_						-			NR	_
Cobalt				_	·				NR	— I
Copper		_							NR	<u> </u>
Iron		_		_				_	NR.	1
Lead						_		_	_NR	— 1
Magnesium		_		_		 _		_	_NR	_
Manganese		_	-	_		_		_	NR	_
Mercury_		 _		_		_		_	NR	_ 1
Nickel		_		_		_	ļ	_		1
Potassium		_		_		 _		_	NR	_ 1
Selenium_		-		 —		-		-	NR NR	_
Silver		-		-		-		-	NR NR	_
Thallium		-		-		-	<u> </u>	-		_
Vanadium_		-		-		-		-		_
Zinc		-		-		-		-	- NR	
Cyanide		-		-		-		-		
Arsenic 8	2.0	Ū	2.0	ีซ	l	1-		-	- F	-
Arsenic 8	2.0	U	2.0	U		1-		-		—

4 ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	LESC		Contract:	68-03-3249
Lab	Code:	LESC	Case No.: LV924	SAS No:	SDG No.:LV924-3051

ICP ID Number: ARL3560_____ ICS Source: UNLV1287____

	m-		~	Ada Tara			linel Doub	
		rue		tial Found	1		inal Found	1
1	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	2-
Analyte	A	AB	A	AB	%R	A	AB	%R
Aluminum_	511000	508000	480680	482042.8	94.9	475861	477782.2	94.1
Antimony_	0	0	40	38.7		1	32.5	
Arsenic	·							
Barium	0	483	1	481.7	_99.7	1	479.6	_99.3
Beryllium	0	474	0	426.9	_90.1	0	426.3	_89.9
Cadmium	0	909	8	947.7	104.3	8	953.6	
Calcium	476000	_470000	427513	429236.4	_91.3	425691	425643.9	_90.6
Chromium_	0	513	12	500.8	_97.6	8	495.0	_96.5
Cobalt	o	478	7	488.8	102.3	3	482.0	100.8
Copper	o	534	9	548.8	102.8	8	540.8	101.3
Iron	219000	_211000	_236830	_237563.9	112.6	_233967	_235269.6	111.5
Lead	0	4850	91	4722.3	_97.4	26	4673.4	_96.4
Magnesium	513000	_513000	_521222	_522591.8	101.9	_519592	_521149.4	101.6
Manganese	0	470	8	508.7	108.2	4	497.6	105.9
Mercury								
Nickel	0	916	7	898.4	_98.1		895.7	_97.8
Potassium	0	0	267	279.6	-	278	270.6	
Selenium_						•		
Silver	0	934	1	980.5	105.0	1	974.9	104.4
Sodium	0	0	127	172.4		148	126.2	
Thallium								
Vanadium_	0	475	-24	473.3	99.6	-26	469.5	98.8
Zinc	o	973	1	930.7	_95.7	-2	922.0	_94.8
			l		l			

4 ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	LESC		Contract: 68-03-3249					
Lab	Code:	LESC	Case No.: LV924	SAS No:	SDG No.:LV924-305B				
ICP	ID Numb	ber: ARL3560_		ICS Source: UNLV	1287				

	Tı	rue	Ini	itial Found	i	Final Found				
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.			
Analyt:e	A	AB	A	AB	%R	Α	AB	%R		
Aluminum_	511000	_508000	_484512	_483936.0	_95.3	_479893	_480034.8	_94.5		
Antimony_	0	0	33	32.0		21	36.7			
Arsenic										
Barium										
Berylli.um										
Cadmium	o	909	4	969.0	106.6	5	938.4	103.2		
Calcium	476000	_470000	_426874	_424217.8	_90.3	_425172	_425094.6	_90.4		
Chromium_										
Cobalt										
Copper										
Iron	219000	_211000	_237857	_237337.1	112.5	_234564	_233661.1	110.7		
Lead										
Magnesium	513000	_513000	_522920	_521770.6	101.7	_517670	_517313.4	100.8		
Manganese	<u> </u>			<u>.</u>						
Mercury_					ļ					
Nickel										
Potassium										
Selenium_					·					
Silver										
Sodium										
Thallium_										
Vanadium_		<u> </u>	l	040.0		l	010.0			
Zinc	0	973	0	948.8	_97.5	3	919.0	_94.5		
l	ł	1	1	1	1	1	l	۱ ۱		

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

					LV924-305S
Lab	Name:	LESC	Contract:	68-03-3249	

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL_ Level (low/med): LOW__

Concentration Units (ug/L or mg/kg dry weight): MG/KG

1								i 1	
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Aluminum			\Box					-	NR
Antimony	75-125	57.9540	-	7.6726	ប៊	127.9	45.3	\overline{N}	Р
Arsenic	, ,	77.3402	-	57.4680		10.2	194.3		$_{\rm F}^{-}$
Barium	75-125	545.8312	-	85.1662	-	511.5	90.1	_	P
Beryllium		11.9693	-	1.0486	B	12.8	85.4	_	P
Cadmium	75-125	26.3683	-	17.1355		12.8	72.2	N	P
Calcium	_		-		-			_	NR
Chromium	75-125	510.8696		22.1995	_	511.5	95.5		P_
Cobalt	75-125	147.6982	_	30.5371	_	127.9	91.6		P_
Copper		8438.4910		9882.5320		63.9	-2258.4		P_
Iron		:			_			l_	NR
Lead		821.5601	_	856.3427		127.9		_	P_
Magnesium			1_		_			_	NR
Manganese		2849.8721_	l_	3162.1995	_	127.9	244.2	_	P_
Mercury	75-125_	1.5825 ₋	_	0.4124	_	1.0	121.9		AV
Nickel	75-125_	151.1253_		35.9591		127.9	90.1	_	P_
Potassium			1_		l_			_	NR
Selenium_	75-125_	8.0563	_	3.9099	_	2.3	180.2	N	F_
Silver	75-125_	121.7136_	_	6.4962	l_	127.9	90.1	_	P_
Sodium			1_		 _			_	NR
Thallium_	75-125_	13.0946_	_	0.6905	В	12.8	· ——	_	F_
Vanadium_	75-125_	132.0460_	_	18.8235	_	127.9		 _	P_
Zinc		926.0870_	_	978.3632	_	127.9	40.9	_	P_
Cyanide			_		_			-	NR
	l		1_			l		 	l

Comments:	
	,

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

					LV924-465
Lab	Name:	LESC	Contract:	68-03-3249	

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL

Level (low/med): LOW__

Concentration Units (ug/L or mg/kg dry weight): MG/KG

1									1
	Control Limit	Spiked Sample		Sample		Spike			
Analyte	%R	Result (SSR)	C	Result (SR)	С	Added (SA)	%R	δ	M
Aluminum			-					_	NR
Antimony	75-125	70.7725	-	6.4378	$\overline{\mathbf{u}}$	107.3	66.0	N	P
Arsenic	75-125	19.0987	-	12.9614	٦	8.6	71.5	N	F-
Barium	75-125	523.5622	-	153.0043	-	429.2	86.3	•	P-
Beryllium	1	10.6652	-	1.0086	R	10.7	90.0	_	P -
Cadmium	75-125	14.5494	-	4.9785	~	10.7	89.2	_	P
Calcium			-		-			_	NR
Chromium	75-125	440.9227	-	14.8927	-	429.2	99.3	-	P
Cobalt	75-125	116.8670	_	14.3348	_	107.3	95.6	_	P_
Copper		368.4120	_	369.9785	_	53.6	-2.9	_	P
Iron			_		-				NR
Lead	75-125_	379.2489		262.5966	_	107.3	108.7	_	P_
Magnesium			_					_	NR
Manganese		2715.9657_	_	3114.4635		107.3	371.4	_	P_
Mercury	75-125_	1.00		0.14	U	0.8	125.0	_	AV
Nickel	75-125_	121.5880_		20.5150	l	107.3	94.2	_	P_
Potassium					_			_	NR
Selenium_	75-125_	2.5322_	_	0.5579	В	1.9	103.4	_	F_
Silver	75~125_	99.5494_	_	2.1459	_	107.3	90.8	_	P_
Sodium			_		$ _{-}$			_	NR
Thallium_	75-125_	11.8455_		0.4292	U	10.7	110.4	_	F_
Vanadium_	75-125_	115.0429_	_	13.7983	_	107.3	94.4	_	P_
Zinc	75-125_	268.0472_	_	197.7682	_	107.3	65.5	N	
Cyanide			_		 _			 _	NR
l					I _	l	l	 	

Com	ments	:						
•			 	 	 	 	174	
•			 .100	 	 	 		1.44

5B POST SPIKE SAMPLE RECOVERY

EPA	SAMPLE	NO.

LV924-30	5

Lab Name: LESC_____

Contract: 68-03-3249

Lab Code: LESC Case No.: LV924 SAS No.: SDG No.:LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Õ	М
Aluminum_								1	NR
Antimony_		524.9600_		30.0000	ប	500.0	105.0	_	P_
Arsenic			_	*	_			_	F_
Barium			-		_			 –	P_P
Beryllium Cadmium		112.9450	-	63.5186	-	50.0	98.9	-	P-
Calcium Calcium		112.9450_	— i		-			_	NR
Chromium			-		-			-	P
Cobalt			-		-			-	P_
Copper			_						P_
Iron			_		_			_	NR
Lead			_		_			_	P_
Magnesium			-		l –			-	NR P
Manganese Mercury	ļ 		-		-			-	AV
Nickel			-		-	<u> </u>	l ———	-	P
Potassium			-		-		ļ — , — —	-	NR
Selenium	•		-		-			-	F
Silver			_						P_
Sodium			_		I_{-}			_	NR
Thallium_			 _		_			_	F_
Vanadium_			-		_			-	P_P
Zinc			-		-	<u> </u>		-	NR
Cyanide			-		1-			-	MIX
I	i ———	1	!	1	l	l	1	1	I

Cor	mments:						
						_	

5B POST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lah	Name:	LESC	Contract: 68-03-3249	1	LV924-46
	Code:				No.: LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW__

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide		500.8450				500.0			NP FP PP NP PN PN PN FP NF PN FP NR NF PN FP NR NF PN FP NR NF PN FP NR

Comments:		

6 DUPLICATES

EPA SAMPLE NO.

LV924-305D

Lab Name: LESC_____ Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW___

% Solids for Sample: _78.2

% Solids for Duplicate: _78.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	Control Limit 15.3	Sample (S) C 11108.6189 7.6726 U 57.4680 85.1662 1.0486 B 17.1355 159355.8312 22.1995 30.5371 9882.5320 35764.8849 856.3427 8876.9054 3162.1995 0.4124 35.9591 1136.6752 B 3.9099 6.4962 455.1407 B 0.6905 B 18.8235 978.3632		Duplicate (D) 10772.3274 7.6726 61.9437 79.8465 0.8951 15.8312 167210.6394 26.2660 25.3708 8243.0179 27945.0128 673.9130 9150.1023 2734.0409 0.3453 34.2455 933.1969 5.4626 4.8849 427.3913 0.6650 17.6726 878.1841	C U B B B - B B	RPD 3.1 7.5 6.4 15.8 7.9 4.8 16.8 18.5 18.1 24.5 23.8 3.0 14.5 17.7 4.9 19.7 33.1 28.3 6.3 3.8 6.3 10.8	Q	M	
---	--------------------	--	--	--	-----------------	---	---	---	--

DUPLICATES

EPA SAMPLE NO.

LV924-46D

Lab Name: LESC_____ Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW___

% Solids for Sample: _93.2 % Solids for Duplicate: _93.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum_ Antimony	12.9	7777.6609	_ ប	4981.6738 6.4378	Ū	43.8_	*	P_P
Arsenic		12.9614		12.2747		5.4	-	F
Barium	42.9	153.0043	-	105.1502	-1	37.1	*	P
Beryllium	1.1		В	0.8155	\overline{B}	21.2		P
Cadmium	1.1	4.9785		3.6052		32.0	*	P_
Calcium	1073.0	1931.2876	_	1519.2060		23.9		P_
Chromium_		14.8927		12.6824		16.0_		P_
Cobalt	10.7_	14.3348	_	10.2146	B	33.6_		P_
Copper		369.9785	_	281.1803		27.3_	*	P_
Iron		19302.5751	Ŀ١	14198.0043	_	30.5_	*	P_
Lead		262.5966	_	257.8755		1.8_	1_'	P_
Magnesium	1073.0_	3492.9399	_	2373.9485		38.1 <u>·</u>	*	P_
Manganese		3114.4635	_	2122.3605	_[37.9_	*	P_
Mercury	0.1_		U	0.1341	บิ		1_	AV
Nickel	8.6_	20.5150	_	14.7210	_	32.9_	1	P_
Potassium	1073.0 <u>.</u>	2291.9742	_	1689.5064		30.3_		P_
Selenium_	1.1_		В	0.4721	В	16.7_	. _	F_
Silver	2.1_	2.1459	_	1.5665	В	31.2_	. _	P_
Sodium	1073.0		В	387.0386	В	8.6_	_	P_
Thallium_	2.1_	1	U	0.4292	U	l	11_	F_
Vanadium_	10.7_	13.7983	_	10.4506	В	27.6_	11_	P_
Zinc		197.7682	_	138.8412	_	35.0_	*	1 1
Cyanide			_		$ _{-} $		1-	NR
		1	_		1_1	l		11

7 LABORATORY CONTROL SAMPLE

Lab Name:	LESC			Contract:	68-03-3	3249	
Lab Code:	LESC	Case No.:	LV924	SAS No.:		SDG	No.:LV924-305B
Solid LCS	Source:	QB2S86					
Aqueous Lo	CS Source:						

_		eous (ug/I		_	Sol				
Analyte	True	Found	%R	True	Found (2	Limi	.ts	%R
Aluminum_				_15802.0	_13892.8		9711.0	_21894.0	_87.9
Antimony_									
Arsenic				17.0	15.3		8.0	26.0	
Barium				260.5	242.7		205.0	316.0	_93.2
Beryllium						_			
Cadmium				11.5	10.3		8.0	15.0	_89.6
Calcium				2826.0	2406.7		1900.0	<u>37</u> 56.0	_85.2
Chromium_				41.0	43.0	_	28.0	54.0	
Cobalt				78.5	71.6	_	54.0	103.0	
Copper				25.5	25.8	_	14.0	37.0	
Iron				_20850.0	_21956.2		_15764.0	_25937.0	
Lead				33.0	33.1	_	11.0	55.0	100.3
Magnesium			<u> </u>	4908.0	6187.3	_	3817.0	6000.0	126.1
Manganese			<u> </u>	367.5	367.8	l_	311.0	424.0	100.1
Mercury				18.0	17.0	\	5.0	31.0	_94.4
Nickel				31.0	26.3	_	22.0	40.0	_84.8
Potassium	·	l	 	2985.0	2587.7		1900.0	4070.0	
Selenium_				24.5	23.8	۱_	17.0	32.0	_97.1
Silver				25.5	26.9	_	21.0	30.0	105.5
Sodium						-			
Thallium_						1_			
Vanadium_				65.5	60.2		49.0	82.0	91.9
Zinc				54.0	47.5	[40.0	68.0	_88.0
Cyanide									

8 STANDARD ADDITION RESULTS

Lab	Name:	LESC	Contract:	68-03-3249	
Lab	Name:	TESC	Contract:	08-03-3249	

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Concentration Units: ug/L

1				1								- 1
EPA Sample No.	Άn	Dil.	0 ADD Abs	CON	1 ADD I ABS	CON	2 ADD ABS	CON	B ADD ABS	Final Conc.	r	Õ
24-405B 24-415B 24-425B 24-445B 24-445B 24-445B	RAS RAS RAS RAS RAS RAS			18 18 18 18 18 18 18 18 18 10 ——————————	60.800 51.100 43.700 29.000 34.600 48.300 26.600 29.200 25.800 33.200 23.000 27.400 26.900	36 -36 -36 -36 -36 -36 -36 -36 -36 -36 -	_85.400 _68.600 _66.900 _53.000 _52.000 _68.200 _40.000		108.000 92.500 96.400 82.700 70.900 91.500 54.400 60.100 62.900 55.200 40.000	36.7 23.2 16.1 7.4 13.5 24.1 13.9 19.4 8.2 20.9 8.0 11.8 31.5	0.9955 0.9981 0.9960 0.9911 0.9992 0.9996 0.9994	X
												- - -
												- - - -

ICP SERIAL DILUTION

EPA SAMPLE NO.

LV924-305B

Lab Name: LESC Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW

Concentration Units: ug/L

		T	Serial		%	1	
	Initial Sample		Dilution		Differ-		
Analyte	Result (I)	C	Result (S)	C	ence	Q	M
		_				_	
Aluminum_	43434.70	_	46734.00_	_	7.6_	1_	P_
Antimony_	30.00	υ	150.00	U		_	NR
Arsenic		_		_		1_	F_
Barium	333.00_	_	351.50	B	5.6_	_	P_
Beryllium		В	5.00_	U	_100.0_	1_	P_
Cadmium	67.00_	_	78.00	1_1	16.4_	1_	P_
Calcium	623081.30	_	693164.50	1_1	11.2_	Ē	P_
Chromium_	86.80		90.50	1_1	4.3_	_	P_
Cobalt	119.40	_	131.00	В	9.7_	1_	P_
Copper	38640.70	_	40485.00	1_1	4.8_	1_	P_
Iron	139840.70	_	147645.50	$ \bot $	5.6_	1_	P_
Lead	3348.30	_	3741.00	$ \bot $	11.7_	E	P_
Magnesium	. 34708.70	_	36302.00	. _	4.6_	1_	P_
Manganese	12364.20	_ŀ	13498.50	_	9.2_	_	P_
Mercury		_				1_	AV
Nickel	140.60	_	150.00	Ū	_100.0_	1_	P_
Potassium	4444.40	\overline{B}	4508.00	В	1.4_	1_	P_
Selenium_							F_
Silver	25.40	_	25.50	B	0.4		P_
Sodium	1779.60	\overline{B}	1758.00	В	1.2	-	P
Thallium				1		-	F
Vanadium	73.60	-	77.50	B	5.3	-	P
Zinc -	3825.40	-	4215.00		10.2	E	P
				:1=1		_	

9 ICP SERIAL DILUTION

EPA SAMPLE NO.

LV924-46

Lab Name: LESC Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix (soil/water): SOIL_

Level (low/med): LOW___

Concentration Units: ug/L

			Serial		%		
]	Initial Sample		Dilution		Differ-		
Analyte	Result (I)	C	Result (S)	C	ence	Q	M
		_				_	
Aluminum_	36243.90_	_	38173.00	. _	5.3_	 _	P_
Antimony_	30.00_	Ū	150.00_	ט		1_	NR
Arsenic		_		. _		1_	F_
Barium	713.00_	_	754.00	В	5.8_	1_	P_
Beryllium	·	В	5.00	U	_100.0_	1_	P_
Cadmium	23.20	_	25.00	U	_100.0_	1_	P_
Calcium_	8999.80		9337.00	В	3.7_	1_	P_
Chromium_	69.40		70.00		0.9_	1_	P_
Cobalt	66.80		89.50	B	34.0_	1_	P_
Copper	1724.10	_	1810.50		5.0		P_
Iron	89950.00		94655.00		5.2		P_
Lead	1223.70		1295.00		5.8_	1_	P_
Magnesium	16277.10		16898.50	B	3.8		P_
Manganese	14513.40	_	15299.50	1	5.4	1	P_
Mercury				-1-1		\perp	ΑV
Nickel	95.60	_	150.00	וט	100.0	_	P
Potassium	10680.60	_	10838.00	В	1.5	I^-	P
Selenium		-	·	-		-	F
Silver -	10.00	-1	25.00	ן סו	100.0	}	P
Sodium	1654.40	\overline{B}	1691.50	В	2.2	-	$ P^- $
Thallium				-		-	F
Vanadium	64.30	-1	69.50	$- \overline{B} $	8.1	-	P P
Zinc	921.60	-1	1009.00	-	9.5	-	P_
		-	111111111111111111111111111111111111111	-		-	

10 HOLDING TIMES

Lab Name: LESC Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

EPA Sample No.	Matrix	Date Received	Mercury Prep Date	Mercury Holding Time	Cyanide Prep Date	Cyanide Holding Time
LV924-305B LV924-305D LV924-315B LV924-335B LV924-345B LV924-355B LV924-365B LV924-375B	SOIL SOIL SOIL SOIL	10/12/89 10/12/89 10/12/89 10/12/89 10/12/89 10/12/89 10/12/89 10/12/89 10/12/89		43 43 43 43 43 43 43 43 43 43		
LV924-375B LV924-385B LV924-395B LV924-405B	SOIL SOIL SOIL	10/12/89 10/12/89 10/12/89 10/12/89	_11/24/89 _11/24/89 _11/24/89	43 43 43 43 43		

7/87

10 HOLDING TIMES

Lab Name: LESC Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No.:LV924-305B

Matrix	Date Received	Mercury Prep Date	Mercury Holding Time	Cyanide Prep Date	Cyanide Holding Time
SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
_SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
SOIL	10/12/89	11/24/89	43		
_SOIL	10/12/89	11/24/89	43		
_SOIL	10/12/89	11/24/89	43		
_SOIL	10/12/89	11/24/89	43	·	
_SOIL	10/12/89	_11/24/89	43		
_SOIL	10/12/89	_11/24/89	43		.
_SOIL	10/12/89	11/24/89	43		
	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	Matrix Received SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89 SOIL 10/12/89	Matrix Date Received Prep Date _SOIL	Matrix Date Received Prep Date Holding Time SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43	Matrix Date Received Prep Date Holding Time Prep Date SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 3 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89 43 SOIL 10/12/89 11/24/89

7/87

11 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: LESC		Contract:	68-03-3249
Lab Code: LESC	Case No.: LV924	SAS No.:	SDG No.:LV924-305B
ICP ID Number:		Date:	11/30/89
Flame AA ID Number:	FIAAV		
Furnace AA ID Number:	PE5000		

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	M
Aluminum			200		\overline{NR}
Antimony			60		NR
Arsenic	193.78	BZ	10	2.0	F
Barium			200		NR
Beryllium			. 5		NR
Cadmium			5		NR
Calcium_			5000		NR
Chromium_			10_		NR
Cobalt			50_		NR
Copper			25_		NR
Iron			100_		NR
Lead			5_		NR
Magnesium			5000_		NR
Manganese	-050.70		15_		NR
Mercury Nickel	_253.78		0.2_	0.2	AV
Potassium			40_		NR NR
Selenium	196.08	BZ	5000_	2.0	F
Silver	-130.00	BZ-		2.0	NR
Silver			5000	<u> </u>	NR
Thallium	276.88	BZ	10	2.0	F
Vanadium	-2.0.00		50		NR
Zinc			20		NR
	1				
	,				

Com	ments:						
		 	 		 		
						·	

11 INSTRUMENT DETECTION LIMITS (QUARTERLY)

an Name. Hrsc		Contract:	68-03-3249
ab Code: LESC	Case No.: LV924	SAS No.:	SDG No.:LV924-305B
CP ID Number:	ARL3560	Date:	11/30/89
lame AA ID Number :			
urnace AA ID Number :			

	Wave- length	Back-	CRDL	IDL	
Analyte	(nm)	ground	(ug/L)	(ug/L)	М
imary cc	(11)	ground	(49/11/	(49/11)	
Aluminum	396.15		200	5.0	P
Antimony_	217.59		60	30.0	P
Arsenic			10		NR
Barium	455.40		200	5.0	P
Beryllium	_313.11		5	1.0	P_
Cadmium	226.50		5	5.0	P_
Calcium_	_422.67		5000	200.0	P_
Chromium_	_267.72		10	5.0	P_
Cobalt	_228.62		50_	10.0	P_
Copper	_324.75		25_	5.0	P_
Iron	_247.29		100_	50.0	P_
Lead	_220.35		5_	50.0	P_
Magnesium	_279.55		5000_	200.0	P_
Manganese	_257.61		1.5	5.0	P_
Mercury			0.2_		NR
Nickel	_231.60		40_	30.0	P_
Potassium	_766.49		5000_	100.0	P_
Selenium_			5_		NR
Silver	_328.07		10_	5.0	P_
Sodium	_589.59		5000_	100.0	P_
Thallium_			10_		NR
Vanadium_	_292.40		50_	5.0	P_
Zinc	_213.86		20_	5.0	P_
	l	l		l	l

Con	nment	S:						
			 	 		P-18-7	 	
			 	 			 	
			 	 		· · · · · · · · · · · · · · · · · · ·	 	

12A ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY)

	Tarra					
	Wave- length	Ţ	ncerelemenc	Correction Fac	COIS FOI	•
nalyte	(nm)	Al	Ca	Fe	Mg	
Luminum	396.15		1			
ntimony	217.59	,				
csenic	-				-	
arium	455.40					
eryllium	313.11					
dmium	226.50			0.0003600		
lcium	_422.67_					
romium_	_267.72_					-
balt	_228,62_					
opper	324.75_		.		·	
ron .	_247.29_					
ead	_220:35_	•			·	
	279.55		-	_1		****
anganese	_257.61_		-	0.0000676		
ercury			.	_ _		
ickel	_231.60_	***************************************				
otassium	_766.49_			_		
elenium_			-			
ilver	_328.07_					
odium	_589.59_					
nallium_				_ _		
anadium_	_292.40_			0.0000978		
inc	_213.86_					
	1		_			

13 ICP LINEAR RANGES (QUARTERLY)

dD	name:	LESC		Contract:	68-03-3249
ab	Code:	LESC	Case No.: LV924	SAS No.:	SDG No.:LV924-305E

 ICP ID Number: ARL3560_____
 Date: 11/30/89

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	М
Aluminum	10.00	100.0	
Antimony	10.00	100.0	
Arsenic			\overline{NR}
Barium —	10.00	100.0	
Beryllium	10.00	100.0	-
Cadmium	10.00	100.0	
Calcium	10.00	100.0	
Chromium		100.0	
Cobalt	10.00	100.0	
Copper	10.00	100.0	
Iron	10.00	100.0	
Lead	10.00	100.0	
Magnesium	10.00	100.0	
Manganese	10.00	100.0	
Mercury			NR
Nickel	10.00	100.0	
Potassium	10.00	100.0	
Selenium_			NR
Silver	10.00	100.0	
Sodium	10.00	100.0	
Thallium_			NR
Vanadium_	10.00	100.0	.
Zinc	10.00	100.0	

Cor	mment	s:					
			 <u> </u>	 	 	 	

Toluene-d8	1.350	1.430	-6.4	1
BFB	0.580		3.6	١
1,2-Dichloroethane-d4	1.263	1.180	6.6	
				ı

FORM VII VOA

1/87 Rev.

		(
Toluene-d8	_ 1.350	1.4°	-5.9	1
BFB	0.580	0.539	7.1	
1,2-Dichloroethane-d4	1.263	1.127	10.8	
				1

FORM VII VOA

1/87 Rev.

Appendix E

Data Validation Report For Groundwater Sampling By ADEQ

(File

ICF KAISER ENGINEERS. INC 160 SPEAR STREET, SUITE 1380 SAN FRANCISCO CA 94105-1535

415/957-0110

ICF KAISER ENGINEERS

NOV 0 9 1989

MEMORANDUM

SUBJECT:

Review of Analytical Data

FROM: Santiago Lee

ESAT Senior Organic Data Reviewer

ICF Kaiser Engineers, Inc.

THROUGH: David Bingham Wallet M. Burgheren

Environmental Scientist

Quality Assurance Management Section Environmental Services Branch, OPM (P-3-2)

TO: Anita Parker

Site Assessment Manager

Site Evaluation Section (H-8-1)

Attached are comments resulting from Region 9 review of the following analytical data:

SITE: Phelps Dodge

EPA SITE ID NO:

CASE/SAS NO.: LV924 Memo #1A

LABORATORY: Region IX, Las Vegas

ANALYSIS: Volatiles by GC/MS

SAMPLE NO.: LV924-01 through LV924-10

COLLECTION DATE: October 5, 6, and 10, 1989

REVIEWER: Wendy Walfoort, ICF Kaiser Engineers, Inc.

TELEPHONE NUMBER: (415) 957-0110

If there are any questions, please contact the reviewer.

Attachment

Data Validation Report

Case No.:

LV924 Memo #1A

Site:

Phelps Dodge

Laboratory:

Region IX, Las Vegas

Reviewer:

Wendy Walfoort

nendy warroore

ESAT/ICF Kaiser Engineers, Inc.

SAS: VOA by GC/MS
Ten (10) air samples

Date:

November 3, 1989

I. <u>Introduction</u>

Region IX Laboratory in Las Vegas received ten (10) water samples on October 6, 1989 and October 12, 1989 for SAS volatiles (VOA) analysis by gas chromatography/mass spectrometry (GC/MS).

The sample numbers are LV924-01 through LV924-10. Samples LV924-06 and LV924-10 are field blanks; sample LV924-03 is a background sample, Sample number LV924-08 is an apparatus blank. Samples LV924-01 and LV324-09 are a field duplicate pair. The samples were collected on October 5 through 10, 1989 and were analyzed on October 9 through 13, 1989.

The analytical results with qualifications are presented in Table 1A. Tentatively identified compounds (TICs) are listed in Table 1C. The sample quantitation limits are presented in Table 2.

This document was prepared according to EPA document "Laboratory Data Validation Functional Guidelines for Evaluating Organic Analyses", April 11, 1985.

Il. Validity and Comments

- A. The reported results in Table 1A for the following analytes are considered as estimates (J) and usable for limited purposes only:
 - Methylene chloride in sample LV924-06
 - Chloroform in samples LV924-06, LV924-08, and LV924-10

Concentrations for these compounds are above the instrument detection limits but below the laboratory quantitation limits. The values are considered to be qualitatively acceptable but quantitatively unreliable due to the uncertainty in analytical precision near the limit of detection.

- B. Due to blank contamination problems, results reported in Table 1A for the following analyte are considered as estimates (J) and usable for limited purposes only:
 - Methylene chloride in samples LV924-02, LV924-03, LV924-04, and LV924-05

Methylene chloride was found in all three field blanks at concentrations between 0.4 ug/L and 0.6 ug/L. Methylene chloride is a common laboratory contaminant. Even though it was not found in the method blank, the presence of methylene chloride in the samples and field blanks is suspected to be due to laboratory contamination.

The results in the samples listed above were considered as nondetected and estimated (UJ) and the quantitation limits have been increased where appropriate, according to the blank qualification rules.

- C. Chloroform was found in all three field blanks, but not in any samples, at levels below the sample quantitation limit.
- D. The 40 CFR 136 holding times were not exceeded for any of the water samples.
- E. All other quality control criteria specified in the SAS request were met and considered acceptable. All other results are considered valid and usable for all purposes.

ANALYTICAL RESULTS TABLE 1A*

Case No.: LV924 Memo #1A

Site: Phelps Dodge

Lab.:

Reviewer: Wendy Walfoort, ESAT/ICF Kaiser Engineers, Inc.

Region IX, Las Vegas

Date: November 3, 1989

Analysis Type: Water Samples for SAS

Volatile Analyses

Concentration in ug/L

Sample Location	1			1			1												ľ		
Sample 1.D.	LV924-	01 D	1	LV924-	02		LV924-	03 B	G	LV924-	04		LV924-0)5		LV924-	06 F	В	LV924	-07	
																				• • • • •	
Compound	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com
VOLATILES					 		 	 					 		 	• • • • • • • • • • • • • • • • • • •		 		-	
Methylene Chloride	່ 1 ປ	i H	ĺ	1 ប	{ 	b	'] 1 U	i 1.1	lhi	: 1 1	-{ 	[b	i I 1 11	.1	b	0.6	(. []	la	1	((1)	i I
Chloroform	1 1 U	•	i I	l 1 U	•	-	, 1 U	•	1 1	1 0	•	1 1	l 1 U			0.5	J	a	1	,	l l
1	1	1	!	1	! !	!	, !	! !	; ;		1	1 1	1		l :	0.5		4	•	1	1
	! 	1		, ,		! 		! 	 			1 1	, ,				! ! !			i i	(
	i	1		i		! }	 		, , ! !		i									1	İ
	i	i	i.			ĺ			i		ì	i		i						i	i
	i	i	i						i i		i	i i		i	i			i		i	İ
	į	i	i						i		i	i i	i	i	i			i		i	i
	1	İ	1						İİ		ĺ	i i		Ì	1			1		İ	1
	1		1											ı	ĺ			1		Ì	
	1	1	[[[·					1 1			1	į		1		1	
] [1				1	l		1		1	
	1												1		1	ı	[1		1	
	1					l J	· J]]]]		J	ļ]	J		1	
	1	1	1 1			1	1				}	1 1	1	1	1	}		1		1	
]			l	ĺ		I		1		İ	1 1		1	1	[1		1	[
	1	1				1	1	Į	!		1		ļ	!	J	1		1		1	
	İ				i	- 1			1		1		1	1	1		ļ			İ	
		1		l	l	1]		ļ	į]]]
i	1	1		1	1	I	1	1	1		1		1		1	}	ł	ł		1	ŀ

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2.

Vai-Validity Refer to Data Qualifiers in Table 18.

D1, D2, etc.-Field Duplicate Pairs

Com.-Comments Refer to the Corresponding Section in the Marrative for each letter.

FB-Field Blank, EB Fquipment Blank, TB-Travel Blank

CRQL-Contract Required Quantitation Limits

BG-Background Sample

NA-Not Analyzed

Analysis Type: Water Samples for SAS

Volatile Analyses

TABLE 1A*

Case No.: LV924 Memo #1A

Site: Phelps Dodge Lab.:

Region IX, Las Vegas

Reviewer: Wendy Walfoort, ESAT/ICF Kaiser Engineers, Inc.

Date: November 3, 1989

Concentration in ug/L

Sample Location Sample I.D.	 LV924-	-08 A	\B	 LV924-	09 01	l 	 LV924 <i>-</i> 	10 F	B	Method VB	Bla LK1		Method VBI	Bla LK2	nk	Method VB	Blai LK3	nk	 	RQL	
Compound	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	Com.	Result	Val	. Co
VOLATILES				[]				• • • •	 	[• • • • • • • • • • • • • • • • • • •	(1	[• • • •	 		 	• • • • 		1	
Methylene Chloride	j 1 u	ıj .	i	1 U	i i	j	່ 1 ປ	i	[1 1 0		i	1 U			1 U			1	i	i
Chloroform	0.4]	a	J 1 U	1 1		0.4	J	а	1 0	ĺ	İ	1 U			1 U	İ		1	İ	İ
	l		1			۱					l										1
	!			<u> </u>	[[İ		[
	}		!			!		}													1
	1	1	1	 	!	j					 										
	l I	1	1	 	 1	l I		! !	 	: 	 	1 1			: I		 			!	
	ſ	1	1 1	(1 1	ı I		[([i i]	1 1	 	! 	: 1 : 1		, , 	, 		1	1
	1					İ			 								! ! ! †	, 		i	i
	İ	i	i		i	į						i i			j		i i	i		i	i
	Ì					ĺ	ĺ							ĺ	1					1	1
		[1				1			1					1			l
	1					l				1		1 1		ļ		1		1		1	1
	1	[ļ									!			. !		!	!
							į			ļ			[ا	.			ļ			
) 1	 	[Į I				1		[1	1	1			i I		1	1
	1	 	; !		1	1			· I	} 		1 1		i			 	l Į		1	1
	1	1	;) 		1	1	:	. !	. 1	l 1		1 l	1	!	 		: 1 1	i		1	1

^{*}The other requested analytes were analyzed for, but "Not Detected". The Sample Quantitation Limits are listed in Table 2. D1, D2, etc.-field Duplicate Pairs Val-Validity Refer to Data Qualifiers in Table 18. Com.-Comments Refer to the Corresponding Section in the Marrative for each letter.

CRQL-Contract Required Quantitation Limits

NA-Not Analyzed

FB-Field Blank, EB-Equipment Blank, TB-Travel Blank

BG-Background Sample

TABLE Detected Tentatively Identified Compounds (TICs)

CASE No. :

LV924 Memo #1A

SITE :

Phelps Dodge

LAB:

Region IX, Las Vegas

REVIEWER :

Wendy Walfoort

ESAT/ICF Kaiser Engineers, Inc.

DATE:

November 3, 1989

Sample <u>Number</u>	Compound	Fraction	Retention Time, min.	Concentration (ug/L)	Rating ^a (Remarks)
LV924-01 D1	None Found	VOA			
LV924-02	None Found	VOA			
LV924-03 BG	None Found	VOA			
LV924-04	None Found	VOA			
LV924-05	None Found	VOA			
LV924-06 FB	None Found	VOA			٠
LV924-07	None Found	AOV			
LV924-08 FB	None Found	VOA			
LV924-09 D1	Unknown	VOA	2.03	1.2 J	
LV924-10 FB	None Found	AOV			

J (estimated): Value is considered usable for limited purposes.

^{*} Rating codes--probability that identification is correct:

A = High B = Moderate C = Low

TABLE 5a Sample Quantitation Limits

Case No. : LV924 Memo #1A Site : Phelps Dodge

Lab: Region IX, Las Vegas

Reviewer: Wendy Walfoort

ESAT/ICF Kaiser Engineers, Inc.

Date: November 3, 1989

<u>Velatile Compounds</u>	<u>Units, ug/L</u>	Q	<u>C</u>
Chloromethane	2		
Bromomethane	2		
Vinyl Chloride	2		
Chloroethane	2		
Methylene Chloride	1		
Acetone	2		
Carbon Disulfide	1		
1,1-Dichloroethene	1		
1,1-Dichloroethane	1		
1,2-Dichloroethene (total)	1 .		
Chloroform	1		
1,2-Dichloroethane	1		
1,2-Dibromoethane	1		
2-Butanone	2		
1,1,1-Trichloroethane	` 1		
Carbon Tetrachloride	1		
Vinyl Acetate	2		
Bromodichloromethane	1		
1,2-Dichloropropane	1		
cis-1,3-Dichloropropene	1		
Trichloroethene	1		
Dibromochloromethane	1		
1,1,2-Trichloroethane	1		
Benzene	1		
trans-1,3-Dichloropropene	1		
Bromoform	1		
4-Methyl-2-pentanone	2		
2-Hexanone	2		
Tetrachloroethene	1		
1,1,2,2-Tetrachloroethane	1		
Toluene	1		
Chlorobenzene	1		
Ethylbenzene	1		
Styrene	1		
Total Xylenes	1		

Q - Qualifier

C - Comment

TABLE 56 DATA QUALIFIERS

NO QUALIFIERS indicates that the data are acceptable both qualitatively and ${\it quantitatively}$.

- U Indicates that the compounds is not detected above the concentration listed.
- J Results are estimated and the data are valid for <u>limited</u> purposes. The results are qualitatively acceptable.
- N Presumptive evidence of the presence of the material. The compound identification is considered to be tentative. The data are usable for limited purposes.
- R Results are rejected and data are <u>invalid</u> for all purposes.

Method Blanks and Associated Samples:

VElk 1: LV924-01, LV924-02, LV924-03, LV924-05, LV924-06

VElk 2: LV924-04, LV924-09

VElk 3: LV924-07, LV924-08, LV924-10

ICF KAISER ENGINEERS

DEC 2 1 1989

ICF KAISER ENGINEERS, INC. 160 SPEAR STREET SUITE 1380 SAN FRANCISCO. CA 94105-1535 415/957-0110

MEMORANDUM

SUBJECT:

Review of Analytical Data

FROM:

Santiago Lee

ESAT Senior Organic Data Reviewer

ICF Kaiser Engineers, Inc. Mr. Thuyhum

THROUGH:

David Bingham

Environmental Scientist

Quality Assurance Management Section

Environmental Services Branch, OPM (P-3-2)

TO:

Tom Mix

Project Officer

Site Evaluation Section (H-8-1)

Attached are comments resulting from Region 9 review of the following analytical data:

> SITE: Phelps Dodge Douglas

EPA SITE ID NO:

CASE/SAS NO.: LV924 Memo #1

LABORATORY: Region IX, Las Vegas

ANALYSIS: RAS Metals

LV924-15 through LV924-24 SAMPLE NO.:

COLLECTION DATE: October 5, 6, and 10, 1989

Margie dela Merced, ICF Kaiser Engineers, Inc. REVIEWER:

TELEPHONE NUMBER: (415) 957-0110

If there are any questions, please contact the reviewer.

Attachment

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

215 Fremont Street

<u>H</u>	Ē	H	0	R	٨	N	0	U	H

San Francisco, Ca. 94105

DATE: / /// 90
SJBJECT: Request for Unvalidated Data Table 1 and/or Data Validation
TO: Dave Bingham, QAMS
[] Request for Unvalidated Data Table 1 [] Request for Data Validation
Please return this form with the completed task. Site: Philps Windl. Project: Program: 57 Lab: Nily Will Will Sase #: V934 SAS #: Hemo #: 5 Analyses: No. 4 My Hatrix: W Number:
Analyses: No. 4 My Matrix: W Number:
Date Received: () Af
site 10 Number: UV 434-184 Call in this to Margie sho numbe
Dates Sampled: 10/5/84
Describe the enalyses and list the sample numbers for this data package: CAS-MUTALS LV 924-18A
Blanks: Bokgrd: Ouplicates: Project Officer: Anita Paulted H-8-1 Sampler: Bryant Hell-
Sampler: GNYMM Held-
Task Completed: / / Transmit Table 1A:/ [] Entered
Data Validation Validation Days Due Requested:
Reviewer/Staff: [] Entered Task Completed: / /
Completed and Sent to RPM: 2/15/90 Late: [] Entered
Please indicate if the laboratory did not comply with the contract and/or if the SAS request was not adequate:

Data Validation Report

Case No.:

LV924 Memo #1

Site:

Phelps Dodge Douglas Region IX, Las Vegas

Laboratory:

Margie dela Merced

Reviewer:

ESAT/ICF Kaiser Engineers, Inc.

Date:

December 14, 1989

11 Waters for RAS Metals

I. <u>Introduction</u>

Region IX Laboratory in Las Vegas received eight (8) water samples on October 7, 1989 and three (3) water samples on October 12, 1989 for dissolved metals and mercury analyses. Sample numbers LV924-15 through LV924-18 were collected on October 5, 1989. Sample numbers LV924-19 through LV924-22 were collected on October 6, 1989 and sample numbers LV924-22A through LV924-24 were collected on October 10, 1989.

Sample number LV924-18 is a background sample. Sample numbers LV924-21 and LV924-24 are field blanks and sample numbers LV924-22 and LV924-23 are equipment blanks. Sample numbers LV924-15 and LV924-16 are a field duplicate pair. Field duplicate pairs have D# suffix (D1 for the first field pair, D2 for the second field pair) in Table 1A.

The analytical results with qualifications are listed in Table 1A. This report was prepared in accordance with the EPA Contract Laboratory Program Inorganic Statement of Work for July 1987 and EPA document "Laboratory Data Validation Functional Guidelines For Evaluating Inorganic Analyses" (1985).

II. <u>Validity and Comments</u> ·

- A. The following results are considered usable for limited purposes because of accuracy problems. The results are considered as estimates and are flagged "J" in Table 1A.
 - Silver in all of the samples

Matrix spike recovery result for silver did not meet criteria for accuracy as listed below. The possible percent bias is also presented below. Where the sample results for silver are undetected, the matrix spike recovery result shows a severe analytical deficiency and false negatives may exist.

	LV924-10			
	Water	Water		
<u>Parameter</u>	% Recovery	% Bias		
Silver	28	- 72		

The samples analyzed for dissolved metals were not digested. Since the samples were not digested, the spikes were added to the samples after filtration but before analysis.

- B. The results reported in Table 1A for the following analytes are considered as estimates (J) and usable for limited purposes only.
 - All results above the instrument detection limit but below the contract required quantitation limit (denoted with an "L" qualifier)

The results above the instrument detection limit but below the contract required quantitation limit are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.

- C. The background sample, LV924-18, had a number of parameters with concentration levels above the field blanks.
- D. The 40 CFR 136 holding times were not exceeded for any of the samples.
- E. All other results are considered valid and usable for all purposes. All QC parameters, other than those discussed here, have been met and are considered acceptable.

DPO: [] ACTION [X] FYI Region IX INORGANIC REGIONAL DATA ASSESSMENT CASE NO. LV924 Memo #1 LABORATORY Region IX, Las Vegas SDG NO. LV924-15 DATA USER SOW _______ REVIEW COMPLETION DATE December 14, 1989 NO. OF SAMPLES 11 WATER SOIL OTHER REVIEWER [] ESD [X] ESAT [] OTHER, CONTRACT/CONTRACTOR _____ ICP Hg Cyanide AA HOLDING TIMES __0__ ______ 0___ 2 INITIAL CALIBRATIONS __0__ 0 0 CONTINUING CALIBRATIONS ____0 0 0 FIELD BLANKS ("F" - not applicable) 0 4 ____O___ ___0 LABORATORY BLANKS 0_ __0___0___ 6. ICS __0__ 7. LCS DUPLICATE ANALYSIS __0__ 0 0___ 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION _ 0 . 12. SAMPLE VERIFICATION __0 0 15. REGIONAL QC ("F" = not applicable) ___F ___F__ F 14. OVERALL ASSESSMENT __0 0 0 - No problems or minor problems that do not affect data usability. X - No more than about 5% of the data points are qualified as either estimated or unusable. M - More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. DFO ACTION ITEMS: AREAS OF CONCERN:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

215 Fremont Street

Н	Ε	М	0	R	٨	H	D	U	H
_	_	_	*****		_			_	_

San Francisco, Ca. 94105

	DATE:	12114189
	SUBJECT:	Request for Unvalidated Data Table 1 and/or Data Validation
	FROM:	Dave Bingham, QAMS
	ĭo:	ICF
		t for Unvalidated Data Table 1 t for Data Validation
<	Site:	Surn this form with the completed task. SUDS DOUGLE Project: DOUS LAS Program: SF 9 9 case #: LV 92HsAS #: Nemo #: 32A RAS-IN Natrix: S Number: 22
	Date Recei	ved: 12,14,89 [] Entered
	Site ID Nu	mber:
	Dates Samp	10/11/89
	Describe t	he analyses and list the sample numbers for this data package: LV 9724 - 305B, 365B, 395B, 435B 47, 51, 315B; 365B, 405B, 445B
۶q.	Banks: Bokgrd: 463 Duplicates	335B, 375B, 415B, 455B,
	Project Of Sampler:	
	Task Compl	eted: / / Transmit Table 1A:/ [] Entered
	Data Valid Requested:	bays ode
		taff: [] Entered Task Completed: / /
	Completed	and Sent to RPM: 1,5,90 Late: [] Entered
		icate if the laboratory did not comply with the contract and/or if quest was not adequate:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

215 Fremont Street

<u>MEMORANDUM</u>	San Francisco, Ca. 94105
DATE:	12,5,89
SUBJECT:	Request for Unvalidated Data Table 1 and/or Data Validation
FROME	Dave Bingham, QAMS
то:	1CF
•	for Unvalidated Data Table 1 for Data Validation
Please retu	rn this form with the completed task.
site: Phel	ps Dodge Project: Douglas Program:
Lab: Region	n IX Lab, LV case #: LV924 sas #: N/A Memo #: 02
	EAS Metals: As, Hg Se TR S Number: 22
Date Receiv	red: 12,5,89 [] Entered
Site ID Num	ber:
Dates Sampl	ed: 10/11/89
Describe th	SOIL RAS Metals. LV 924-305B; 315B, 335B, 345B, 3559 365B, 385B, 395B, 405B, 415B, 425B, 435B, 445B 455B, 46, 47, 48, 49, 50, 51, 52.
Blanks: Bckgrd: <u>L</u> Duplicates:	v 43 x - 43 5 B
Project Off Sampler:	DAN WILLIAMS.
Task Comple	eted: / / Transmit Table 1A: / / [] Entered
Data Valida Requested:	ation Validation Days Due
Reviewer/Si	taff: [] Entered Task Completed: / /
Completed a	and Sent to RPM: S SLate: [] Entered

Please indicate if the laboratory did not comply with the contract and/or if

the SAS request was not adequate:

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

ab Code: LESC_	_ Case No.: LV924	SAS No.:	SDG No.:LV924-305B

Contract: 68-03-3249

Initial Calibration Source: UNLV, NBS, INT

Lab Name: LESC_____

Continuing Calibration Source: INTERNAL____

Concentration Units: ug/L

									_
	Initia	al Calibra	ation		Continuir	ng Cali	bration		
Analyte	True	Found	%R(1)	True	Found	%R(1)		%R(1)	M
Aluminum	2000.0	2146.30	107.3	5000.0	5083.90	101.7	4963.10	99.3	P
Antimony	1010.0	1056.40	104.6	5000.0	_ 5034.80	100.7	5106.90	102.1	P
Arsenic	100.0	103.20	103.2	50.0	50.90	101.8	53.60	107.2	F
Barium	2010.0	1951.20	97.1	500.0	502.60	100.5	507.40	101.5	P
Beryllium	501.0	460.40	91.9	500.0		101.0	511.90	102.4	P
Cadmium	492.0	502.90	$\overline{1}02.2$	5000.0	5049.10	101.0	5148.30	103.0	P
Calcium	_50200.0	49452.40	_98.5	25000.0	24552.70	98.2	24371.10	_97.5	P
Chromium	503.0	506.80	100.8	5000.0		$\bar{1}01.2$			P
Cobalt	498.0	503.60	101.1	5000.0	5054.00	101.1	5140.90	102.8	P
Copper	520.0	525.20	101.0	5000.0	4967.60	99.4	4973.60	99.5	P
Iron ·	2081.0	2053.20	98.7	5000.0	5034.40	100.7	5171.30	$\frac{1}{1}03.4$	P
Lead	496.0.0	4744.40	95.7	5000.0	5030.50	100.6	5067.40	101.3	P
Magnesium	25700.0	25716.20	100.1	25000.0	$\overline{2}5028.20$	100.1	25070.40	100.3	P
Manganese	504.0	534.20	106.0	5000.0	5016.00	100.3	5079.60	101.6	P
Mercury	28.1	27.20	96.8	5.0	· —		5.40	108.0	7A
Nickel	485.0	475.60	98.1	5000.0	5042.90	100.9	5119.20	102.4	P
Potassium	50200.0	51752.00	$\bar{1}03.1$	25000.0	24442.50	97.8	24354.50	97.4	P
Selenium	100.0	103.80	103.8	50.0	50.50		48.60	97.2	F
Silver	484.0	463.60	95.8	1000.0	1006.60	100.7	1012.20	101.2	P
Sodium	51500.0	51112.70	99.2	25000.0	$\overline{2}4346.10$		$\frac{1}{2}$ 4230.80	96.9	P
Thallium_	50.0	50.40	100.8	25.0					F
Vanadium_	505.0	504.20	_99.8	5000.0		· —	l ——	102.4	P
Zinc	2920.0	2902.60	99.4					103.8	P
Cyanide				1				[]	NI
		I		f	1	1]	l l	ı

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC		Contract: 68-03-32	249
Lab Code: LESC Case N	o.: LV924	SAS No.:	SDG No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, IN	1 T	
Continuing Calibration Source:	INTERNAL_		

Concentration Units: ug/L

				<u> </u>					<u> </u>
	Tnitia	l Calibr	ation		Continuir	na Cali	bration		
Analyte	True	Found		True	Found			%R(1)	М
imary co	1140	rouna	01((1)	1140	1 Ouna	91((1)	Tourid	011(1)	'
Aluminum	<u> </u>		T	5000.0	4949.40	99.0	4933.90	98.7	P
Antimony_	-			5000.0			5037.30		P_
Arsenic	-	1		50.0					F F
Barium	-		1		505.40	101.1	506.20		P_
Beryll <u>iu</u> m	-						510.20		P ⁻
Cadmium							5104.00		P_
Calcium_	-						24293.10		P
.Chromium	-				5068.60				P
Cobalt							_5068.50	101.4	P
Copper	-						4952.80		P
Iron	·			5000.0	4937.50	98.8	4803.00	96.1	P_
Lead			1				. 5015.80		P_
Magnesium				25000.0	$\overline{2}5010.10$	100.0	$\overline{2}4943.70$	99.8	P_
Manganese							4976.50		P_
Mercury			1	5.0	5.32	106.4	_		AV
Nickel				5000.0	5071.10	101.4	5071.90	101.4	P_
Potassium				25000.0	24447.40	97.8	24196.30	96.8	P_
Selenium_					48.40				F_
Silver			1	1000.0	998.20	99.8	1002.70	$ \overline{1}00.3 $	P_
Sodium				25000.0			$\frac{1}{2}$ 4146.50		P
Thallium_				25.0					F_
Vanadium_				5000.0			5070.20	101.4	P_
Zinc				5000.0	5046.30	100.9	5078.40	101.6	P_
Cyanide					_				NR

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	LESC	-		Contract:	68-03-32	49
Lab	Code:	LESC	Case No	o.: LV924	SAS No.: _	· · · · · · · · · · · · · · · · · · ·	SDG No.:LV924-305E
Ini	cial Ca	alibration Sour	ce:	UNLV, NBS, IN	Т		
Conf	cinuing	g Calibration So	ource:	INTERNAL			

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)		%R(1)	M
Aluminum_				5000.0		_98.2	_5103.40		P P
Antimony_	100.0	103.90	103.9	5000.0	_			1	F-
Arsenic Barium	100.0	103.90	103.9	50.0	51.50	103.0			P-
Beryllium	·			500.0				100.5	P-
Cadmium				500.0 5000.0					P
Calcium	· · · · · · · · · · · · · · · · · · ·	······································		25000.0					P-
Chromium	i	· · · · · · · · ·		5000.0	5106.70			i — I	P-
Cobalt.					5096.30				P-
Copper Copper					4972.30				P-
Iron				5000.0				I — I	P ⁻
Lead					5027.40		t _	1	P-
Magnesium					25106.60		25148.90		P
Manganese				5000.0	4990.80				P-
Mercury_			<u> </u>		_4990.00	- 55.0	-4721.00	-'0:4	NR
Nickel Nickel			<u> </u>	5000.0	5128.90	102.6	5056.90	101.1	P
Potassium					24358.50			t 1	P
Seleniun	100.0	100.80	100.8			; 		1)	F
Silver			1200.0	1000.0	995.70				P-
Sodium				25000.0		· —	-	1 —	P
Thallium	50.0	47.80	95.6		23.40		1	· — I	F
Vanadium			-	5000.0	· ——	· —			l P
Zinc				5000.0	5098.80		l —	100.8	P
Cyanide					-		-		NĒ
			· ———	1 ————	· ————	·	l	· —	—

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: LESC	Contrac	ct: 68-03-3249
Lab Code: LESC Case N	o.: LV924 SAS No.	SDG No.:LV924-305E
Initial Calibration Source:	UNLV, NBS, INT	
Continuing Calibration Source:	INTERNAL	

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	tion %R(1)	True	Continuir Found	ng Cali %R(1)		%R(1)	M
Aluminum_ Antimony_ Arsenic Barium	1010.0	_1072.03	106.1	5000.0 50.0	_5043.00 55.20		_5029.83	100.6	NR P F NR
Beryllium Cadmium Calcium Chromium	492.0	508.90	103.4	5000.0	_5196.70	103.9	_5165.49	103.3	NR P_ NR NR
Cobalt Copper Iron									NR NR NR
Lead Magnesium Manganese Mercury_						·			NF NF NF
Nickel Potassium Selenium_				50.0	46.80		47.40	94.8	NF NF F_
Silver Sodium Thallium_ Vanadium				25.0	25.40	101.6	25.30	101.2	NF NF F
Zinc Cyanide	2920.0 	_2987.29	102.3	5000.0	_5233.26	104.7	5205.40	104.1	P_ HF

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

ab Name: LESC	Contr	act: 68-03-32	49
Lab Code: LESC Case No	o.: LV924 SAS N	o.:	SDG No.:LV924-305B
Initial Calibration Source:	UNLV, NBS, INT		
Continuing Calibration Source:	INTERNAL		

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	tion %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)
Aluminum_ Antimony_ Arsenic Barium	100.0	95.80		5000.0 50.0	<u>5024.05</u> 45.90	91.8	4998.54 49.90	100.0
Beryllium Cadmium Calcium				5000.0	_5119.38	102.4	_5026.86	100.5
Chromium_ Cobalt Copper								
Iron Lead Magnesium								
Manganese Mercury Nickel								
Potassium Selenium_ Silver	100.0	103.40	103.4	50.0	53.20	106.4	53.70	107.4
Sodium Thallium_ Vanadium	50.0	47.70	_95.4	25.0	24.70	_98.8	24.60	_98.4
Zinc Cyanide				5000.0	515648	103.1	_5062.43	101.2

CASE NO. <u>LV924 Memo #1A</u> LAI	BORATORY	Region	IX, Las '	Vegas
SDG NO. <u>LV924-01</u> DAT	ra user			
SOW WCS	VIEW COMPL	ETION DA	re <u>Nov</u>	ember 3, 1
NO. OF SAMPLES 10 WATER	soir _	OT	HER	
REVIEWER [] ESD [X] ESAT [] OTHER	R, CONTRAC	CT/CONTRA	CTOR	
	VOA	BNA	PEST	OTHER
1. HOLDING TIMES	0			
2. GC-MS TUNE/GC PERFORMANCE	_ 0			
2. INITIAL CALIBRATIONS	0			
4. CONTINUING CALIBRATIONS	0			
5. FIELD BLANKS ("F" - not applicable) <u>0</u>			
6. LABORATORY BLANKS	0			
7. SURROGATES	<u> </u>		-	
8. MATRIX SPIKE/DUPLICATES	0			
9. REGIONAL QC ("F" = not applicable)	F			
10. INTERNAL STANDARDS	0		····	
11. COMPOUND IDENTIFICATION	0			
12. COMPOUND QUANTITATION	0			
13. SYSTEM PERFORMANCE	0		***************************************	
14. OVERALL ASSESSMENT	0		<u> </u>	···
 O = No problems or minor problems that X = No more than about 5% of the data or unusable. M = More than about 5% of the data poi Z = More than about 5% of the data poi 	points ar nts are q	e qualifi ualified	ed as ei as estin	ther estinated.
DPO ACTION ITEMS:				·····

(

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

215 Fremont Street

ME	M O	R	A	H	D	UH
				_		

30

the SAS request was not adequate:

San Francisco, Ca. 94105

DATE:	10,89,89		
SUBJECT:	Request for Unvalidated Data	Table 1 and/or Data Val	idation
FROM:	Dave Bingham, QAMS		
10:	ICF		
	t for Unvalidated Data Table 1 t for Data Validation		
Flease ret	urn this form with the complet	ed task.	
site: Phe	10 hs Jodge Project:	Douglas Pros	ram: 5/
Lab: (1)	T 1/ case #: 1/924		#: 01
Analyses:_	phs Dodge Project:_ X & V Case #: &V 424 RAS-Ox VPAs Matrix: V	1 Number= 10	
	*** 11 , 30,89 [] Enter		
5 · 1 · 1 · 4 ·	.ezer		
Dates Sawo	· · · · 10/12/89		
Desir te :	· · · · · · · · · · · · · · · · · · ·	e numbers for this data	package:
		-	
Blanks, Bokgnot	06, 51, 52, 08, 53, 10 3	124	
Duptizates Amily Pu Project Of Sampler:	Sohn Chester Dan W	HI (H-8-1) Villiams DEQ-AZ	-
lask Compt	e: / / Transmit Tab	le 1A:[] Entered
Data Valid			
Requested:	Assigned:		ate: / /
Reviewer/S	Staff [] Entered	Task Complet	ed: / /
Completed	and Sent to RPM: 119	_ Late: [] Entered	
Please inc	dicate if the laboratory did no	t comply with the contra	act and/or if

Lile Winds laster

CASE NARRATIVE

Laboratory: Region IX

Case Number: LV924 (Phelps Dodge Superfund Site)

Sample Delivery Group (SDG): LV924-01

Contract: CERCLA

Document Control #: ESAT-A-9B0037

Analyses Performed: GC/MS for Volatile Organics

Sample Numbers:

ro manaorro.		
EPA Number	Sample ID	<u>File ID</u>
LV924-01	90W001	8910287
LV924-02	90W003	8910288
LV924-03	90W004	8910289
LV924-04	90W0 0 5	8910299
LV924-05MS	90W008MS	8910297
LV924-05MSD	90W009DS	8910298
LV924-05	90W006	8910292
LV924-06	90W007	8910291
LV924-07	90W057	8910301
LV924-08	90 W 058	8910302
LV924-09	90W002	8910300
LV924-10	89W059	8910303
VBLK1	90W010RB	B1009
VBLK2	90W010RB	B1010
VBLK3	90W062RB	B1013

Two sets of 10 water samples taken from the Phelps Dodge Superfund Site were received at the Region IX EPA laboratory on 10/6/89 and 10/12/89. Analyses for volatile organics by the low detection limit (25 ml sparge) method were requested.

Methylene chloride was found in low concentrations (< 1.0 PPB) in samples LV924-02 to LV924-06. Chloroform was found in low concentrations (<1.0 PPB) in samples LV924-06, LV924-08, and LV924-10. Sample LV924-10 contained a TIC compound (possibly fluorotrimethyl silane) at approximately 1 PPB. No TCL or TIC compounds were found in any other samples.

All method requirements were met. The data is of good quality.

All protocols required of method 624 were followed with two exceptions. The quantitation mass for surrogate BFB was changed from 95 to 176. This was required because 1,1,2,2-tetrachloroethane has a mass 95 fragment ion and coelutes with BFB, therefore contributing to the BFB response factor. The reference compound for bromoform was changed from 1,4-difluorobenzene to d5-chlorobenzene. Bromoform is nearly the last compound to elute from a VOCOL capillary column, so it should be referenced against the last internal standard.

A definition of the codes used on the chromatograms (RIC's) to identify internal standard and surrogate peaks are given on the following page.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above.

Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

James L. Johnson Team Leader, Region IX Laboratory

000003

2A WATER VOLATILE SURROGATE RECOVERY

Lab Name: REGIONIX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

	EPA	S1	S2	S3	OTHER	TOT
	SAMPLE NO.	(TOL) #	(BFB)#	(DCE) #		OUT
	=========	=====	=====	=====	=====	===
01	LV924-01	103	104	. 99		0
02	LV924-02	101	107	104		0
03	LV924-03	99	111	101		0
04	LV924-04	99	101	101		0
05	LV924-05	99	110	104		0
06	LV924-06	99	107	100		0
07	LV924-07	90	105	101		0
80	LV924-08	90	108	95		0
09	LV924-09	97	104	102		0
10	LV924-10	96	102	94		0
11	LV924-04DS	95	107	97	_	0
1.2	LV924-04MS	96	106	96		0
13	VBLK1	103	104	100		0
14	VBLK2	100	103	100		0
15	VBLK3	104	98	97	1	0
						ll

QC LIMITS

(88-110) S1 (TOL) = Toluene-d8

S2 (BFB) = Bromofluorobenzene (86-115) S3 (DCE) = 1,2-Dichloroethane-d4 (76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogates diluted out

page 1 of 1

FORM II VOA-1

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: REGION IX EPA _____ Contract: SUPERFUND___

Lab Code: FINN Case No.: LV924 SAS No.: _____ SDG No.: 924-01

Matrix Spike - EPA Sample No.: LV924-04

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene	10.0 10.0 10.0 10.0	0 0 0 0	8.52 10.2 10.3 9.69 10.3	85 102 103 97 103	61-145 71-120 76-127 76-125 75-130

CCMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC L	MITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	10.0 10.0 10.0 10.0 10.0	8.10 10.3 10.4 9.73 10.4	81 103 104 97 104	5 -1 -1 0	14 14 11 13 13	61-145 71-120 76-127 76-125 75-130

:# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 5 outside limits
Spike Recovery: 0 out of 10 outside limits

COMMENTS: EPA #LV924-04-PHELPS DODGE SF CASE LV924-REG IX #90W005

EM 1125-GC DESC VO-SCAN DESC VO-25 ML PURGE

FORM III VOA-1

4A VOLATILE METHOD BLANK SUMMARY

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

Lab File ID: B1009 La

Lab Sample ID: 90W010RB

Date Analyzed: 10/09/89

Time Analyzed:

1109

Matrix: (soil/water) WATER

Level: (low/med)

LOW

Instrument ID:

FINN

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	==========		
01	LV924-01	90W001	8910287	1151
02	LV924-02	90W003	8910288	1254
03	LV924-03	90W004	8910289	1330
04	LV924-05	90W006	8910292	1511
05	LV924-06	90₩007	8910291	1440

COMMENTS: METHOD BLANK-SF CASE LV924-PHELPS DODGE-REG IX #90W010RB

EM 1125-SCAN DESC VO-GC DESC VO-25 ML PURGE

page 1 of 1

FORM IV VOA

VOLATILE METHOD BLANK SUMMARY

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

Lab File ID: B1010 Lab Sample ID: 90W010RB

Date Analyzed: 10/10/89 Time Analyzed: 1414

Matrix: (soil/water) WATER Level:(low/med) LOW

Instrument ID: FINN

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

•	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	=======================================	=======================================	========
01	LV924-04	90W005	8910299	1636
02	LV924-09	90W002	8910300	1707
03	LV924-04DS	90W009DS	8910298	1557
04	LV924-04MS	90W008MS	8910297	1521

COMMENTS: METHOD BLANK -PHELPS DODGE SF CASE LV924-REG IX #90W010RB

EM 1125-GC DESC VO-SCAN DESC VO-25 ML PURGE

page 1 of 1

FORM IV VOA

4A VOLATILE METHOD BLANK SUMMARY

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: ____ SDG No.: 924-01

Lab File ID: B1013 Lab Sample ID: 90W062RB

Date Analyzed: 10/13/89 Time Analyzed: 1055

Matrix: (soil/water) WATER Level:(low/med) LOW

Instrument ID: FINN

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

٠	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	=========	=======================================	=======
01	LV924-07	90₩057	8910301	1138
02	LV924-08	90W058	8910302	1304
03	LV924-10	90W059	8910303	1338
	·			

COMMENTS: METHOD BLANK-PHELPS DODGE SF CASE LV924-REG IX #90W062RB

EM 1125-SCAN DESC VO-GC DESC VO-25 ML PURGE

page 1 of 1

FORM IV VOA

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: ____ SDG No.: 924-01

Lab File ID: BF1003 BFB Injection Date: 10/03/89

Instrument ID: FINN BFB Injection Time: 0829

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176 177	15.0 - 40.0% of mass 95 30.0 - 60.0% of mass 95 Base peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 Greater than 50.0% of mass 95 5.0 - 9.0% of mass 174 Greater than 95.0%, but less than 101.0% of mass 174 5.0 - 9.0% of mass 176	16.7 41.1 100.0 8.3 0.1 (0.1)1 80.9 6.1 (7.5)1 79.5 (98.3)1 5.2 (6.6)2
·	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

C1003D

C1003EE

EPA LAB LAB DATE TIME SAMPLE NO. ANALYZED SAMPLE ID FILE ID ANALYZED ======== ______ ____ ______ ______ C1003A 10/03/89 01 VSTD040 C1003A 0936 VSTD030 C1003B C1003B 10/03/89 1012 02 C1003C 10/03/89 1053 03 | VSTD020 C1003C

C1003D

C1003EE

10/03/89

10/03/89

1135

1608

page 1 of 1

04

05

VSTD010

VSTD004

FORM V VOA

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

Lab File ID: BF1009 BFB Injection Date: 10/09/89

Instrument ID: <u>I-50</u> BFB Injection Time: <u>0953</u>

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	15.0 - 40.0% of mass 95	16.1
75	30.0 - 60.0% of mass 95	39.6
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.3
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	74.7
175	5.0 - 9.0% of mass 174	5.3 (7.1)1
176	Greater than 95.0%, but less than 101.0% of mass 174	72.5 (97.1)1
177	5.0 - 9.0% of mass 176	5.1 (7.1)2
,,	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	=======	======================================	=========		
01	VSTD010A	C1009	C1009	10/09/89	1032
02	VBLK1	90W010RB	B1009	10/09/89	1109
03	LV924-01	90W001	8910287	10/09/89	1151
04	LV924-02	90W003	8910288	10/09/89	1254
05	LV924-03	90W004	8910289	10/09/89	1330
06	LV924-06	90W007	8910291	10/09/89	1440
07	LV924-05	90W006	8910292	10/09/89	1511
•				•	

page 1 of 1

FORM V VOA

Lab Name: REGION IX EPA Contract: SUPERFUND

BF1010____ Lab File ID: BFB Injection Date: 10/10/89

Instrument ID: FINN BFB Injection Time: 0906

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
======		=======================================
50	15.0 - 40.0% of mass 95	16.0
75	30.0 - 60.0% of mass 95	40.1
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.1
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	Greater than 50.0% of mass 95	74.7
175	5.0 - 9.0% of mass 174	5.2 (6.9)1
176	Greater than 95.0%, but less than 101.0% of mass 174	72.6 (97.2)1
177	5.0 - 9.0% of mass 176	4.9 (6.8)2
l		

1-Value is % mass 174 2-Value is % mass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	=========	=======================================	=======================================	=======================================	========
01	VSTD010B	C1010	C1010	10/10/89	1336
02	VBLK2	90W010RB	B1010	10/10/89	1414
03	LV924-04MS	90W008MS	8910297	10/10/89	1521
04	LV924-04DS	90W009DS	8910298	10/10/89	1557
05	LV924-04	90W005	8910299	10/10/89	1636
06	LV924-09	90₩002	8910300	10/10/89	1707

page 1 of 1

FORM V VOA

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

Lab Fale ID: BF1012 BFB Injection Date: 10/12/89

Instrument ID: <u>I-50</u> BFB Injection Time: <u>0855</u>

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	21.4
75	30.0 - 60.0% of mass 95	48.0
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.3
173	Less than 2.0% of mass 174	0.1 (0.1)1
174	Greater than 50.0% of mass 95	89.1
175	5.0 - 9.0% of mass 174	6.8 (7.6)1
176	Greater than 95.0%, but less than 101.0% of mass 174	88.1 (98.9)1
177	5.0 - 9.0% of mass 176	6.2 (7.0)2
		176

1-Value is % mass 174 2-Value is % mass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA LAB SAMPLE NO. SAMPLE ID				DATE ANALYZED	TIME ANALYZED
	========	=======================================	==========	=======	========	
01	VSTD040	C1012A .	C1012A	10/12/89	1350	
02	VSTD020	C1012C	C1012C	10/12/89	1501	
03	VSTD010	C1012D	C1012D	10/12/89	1537	
04	VSTD004	C1012E	C1012E	10/12/89	1608	
05	VSTD030	C1012BB	C1012BB	10/12/89	1653	
			,	,,		

page 1 of 1

FORM V VOA

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: SDG No.: 924-01

Lab File ID: BF1013 BFB Injection Date: 10/13/89

Instrument ID: <u>I-50</u> BFB Injection Time: <u>0915</u>

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.8
75	30.0 - 60.0% of mass 95	49.1
, -		}
95	Base peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.3
173	Less than 2.0% of mass 174	0.2 (0.2)1
174	Greater than 50.0% of mass 95	89.2
175	5.0 - 9.0% of mass 174	6.4 (7.2)1
176	Greater than 95.0%, but less than 101.0% of mass 174	88.5 (99.2)1
177	5.0 - 9.0% of mass 176	6.0 (6.8)2
l		
	1-Value is % mass 174 2-Value is % mass 174	ass 176

THIS TUNE APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID			TIME ANALYZED
				=======	=======
01	VSTD010C	C1013A	C1013A	10/13/89	1018
02	VBLK3	90W062RB	B1013	10/13/89	1055
03	LV924-07	90W057	8910301	10/13/89	1138
04	LV924-08	90W058	8910302	10/13/89	1304
05	LV924-10	90W059	8910303	10/13/89	1338
				, , , , , ,	•

page 1 of 1

FORM V VOA

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV921 SAS No.: SDG No.: 921-04

Instrument ID: FINN Calibration Date(s): 10/03/89 10/03/89

Matrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) CAP

Min FRF for SPCC(#)* = 0.300 (0.250 for Bromoform) Max &RSD for CCC(*) = 30.0%

*** A for Brown form of the RF of RF 10

LAB FILE ID: < thank RRF30	- 0100	21212	TO TO		1035	 ,	
21.0 12.00				$\frac{50}{000} = \frac{C10}{000}$			
	0= C100	3 B		$\frac{200}{100} = \frac{C10}{C10}$	303A		
RRF 30 RRF 30		·····	RRF	70	·		
COMPOUND	RRF 20	RRF 50	RRF100	RRF150	RRF200	RRF	RSD
Chloromethane	1.015	1.042	1	(1 !	0.968	6.8#
Bromomethane	2.695	2.830	2.516	2.527	2.479	2.609	5.7
Vinyl Chloride	* 1.129	1.208	1.081	1.092	0.932	1.088	9.2*
Chloroethane	1.887	1.848	1.636	1.653	1.607	1.726	7.6
Methylene Chloride	2.580	2.054	1.802	1.809	1.814	2.012	16.7
Acetione	0.251			0.203	0.191	0.210	22.9
Carbon Disulfide	7.118	7.356				7.091	3.5
1,1-Dichloroethene	* 3.675	3.454				3.370	
1,1-Dichloroethane	# 4.783	4.865			1	4.711	2.7#
1,2-Dichloroethene (total)_	3.154	2.991				2.921	5.3
Chloroform	* 4.442					4.316	
1,2-Dichloroethane	1.281					1.238	2.6
1,2-Dibromoethane	0.248						
1,2-Dibromo-3-Chloropropane	0.027			0.029	0.030	0.029	3.8
2-Butanone	0.034						31.1
1,1,1-Trichloroethane	0.535				0.490	0.516	3.6
Carbon Tetrachloride	0.728						6.9
Vinyl Acetate	0.201			•			
Bromodichloromethane	0.315						
	* 0.247						4.9*
cis-1,3-Dichloropropene	0.311	1					8.91
Trichloroethene	0.509				1		3.4
Dibromochloromethane	0.277	0.252	0.269	0.267	0.271	0.267	3.5
1,1,2-Trichloroethane	0.149						
Benzene	0.856				0.785	0.810	3.4
trans-1,3-Dichloropropene	0.177						2.1
Bromoform	# 0.164	0.157	0.167	0.174	0.182	0.169	5.7
4-Methyl-2-Pentanone	0.096	0.080	0.073	0.075	0.074	0.080	11.9
2-Hexanone	0.090	1					13.3
Tetrachloroethene	0.886	1					3.8
1,1,2,2-Tetrachloroethane	# 0.211	1				0.195	
Toluene	* 0.865	0.825	0.799	0.807	0.800	0.819	3.4
Chlorobenzene	# 1.072	1.004			1.000	1.014	3.3
	* 0.585						
Styrene	0.799						
Total Xylenes	0.607	1					
1,3-Dichlorobenzene	0.635						
1,4-Dichlorobenzene	1.086						4.0
1,2-Dichlorobenzene	0.602						2.4
			1			1	
		FORM VI	'VOA			'	/87 Rev

	======	======	======	======	======	======	=====
Toluene-d8	1.396	1.363	1.337	1.333	1.320	1.350	2.2
BFB		0.573					1.3
1,2-Dichloroethane-d4	1.130	1.241	1.260	1.375	1.309	1.263	7.2

FORM VI VOA

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: REGION IX EPA ____ Contract: WS-25

Lab Code: FINN Case No.: WS-25 SAS No.: ____ SDG No.: CONC1

Instrument ID: FINN Calibration Date(s): 10/12/89 10/12/89

Matrix:(soil/water) ____ Level:(low/med) LOW ___ Column:(pack/cap) CAP

Min \overline{RRF} for SPCC(#) = 0.300 (0.250 for Bromoform) Max %RSD for CCC(*) = 30.0%

RRF for $SPCC(\#)^{K} = 0.300$	(0.250	for Bro	noform)	Max %RS	SD for C	CCC(*) =	: 30.0%
In RRF for SPCC(#) = 0.300 		2E	RRF .	10			
LAB FILE ID: RRF20	= C101	2E	RRF	$\theta = C10$]	
tall 100- CIOIZC Idd IS	0 = C101	2BB	rener 2	200= CI()12A		
KRF210 RRF30		,	RRF				
	RRF04	RRF10	RRF IV	RRFSU	RRF40		8
COMPOUND	RRF2'0	BRF50		PRF150		RRF	RSD
				1	=====	=====	=====
	1.094	1				0.974	12.2#
Bronomethane Vinyl Chloride	2.999	2.685				2.567	11.0
Vinyl Chloride	* 1.184	1.293				1.143	12.7*
Chloroethane Methylene Chloride Acetione	1.804	1.681				1.576	10.4
Methylene Chloride	2.071	1.796		1.519		1.687	14.8
Acetone	0.241	0.207				0.215	6.8
Carbon Disulfide	6.638	6.182				6.217	4.8
1,1-Dichloroethene	* 3.631	3.510					8.2*
Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (total)_ Chloroform	# 4.923	4.730				4.630	4.3#
1,2-Dichloroethene (total)_	2.902	2.703					6.0
Chloroform	* 4.938	4.671					3.8*
1,2-Dichloroethane	1.772	1.574					9.2
1,2-Dibromoethane	0.268					0.250	5.8
1,2-Dibromo-3-Chloropropane	0.028	0.030		0.031			9.0
2-Butanone	0.020	0.046					42.8
1,1.1-Trichloroethane Carbon Tetrachloride	0.749	0.690				0.699	4.6
Carbon Tetrachloride	0.842	0.828				0.879	7.6
Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane	0.193	0.179	0.190	0.183	0.213	0.192	6.9
Bromodichloromethane	0.344	0.357					4.8
1,2-Dichloropropane	* 0.231	0.204					5.4*
cis-1.3-Dichloropropene	1 0.309	1 0.301	0.281	0.286			5.0
Trichloroethene	0.533	0.480	0.493	0.470	0.465	0.488	5.6
Trichloroethene Dibromochloromethane	0.306	0.280	0.278	0.297	0.348	0.302	9.4
1,1,2-Trichloroethane	0.132	0.135	0.121	0.123	0.140	0.130	6.2
Benzene	0.846	0.794	0.786	0.754	0.744	0.785	5.1
Benzene trans-1,3-Dichloropropene Bromoform	0.194	0.186	0.170	0.179	0.215	0.189	9.1
Bromoform	# 0.182	0.180	0.194	0.184	0.226	0.193	9.9#
Bromoform 4-Methyl-2-Pentanone	0.067	0.094	ŀ	0.083	1		
2-Hexanone	0.054	0.066	0.057	0.063			15.2
Tetrachloroethene	1.022	0.940	0.954	0.869	1		7.5
1,1,2,2-Tetrachloroethane_	# 0.210	0.200			0.207		l I.
Toluene	* 0.923	1 0.886					
Chlorobenzene	# 1.070	1.011					
Ethylbenzene	* 0.633	0.581					1
Styrene							
Styrene	0.646	0.631					
1.3-Dichlorobenzene	0.722	0.706					
1,4-Dichlorobenzene	1.033	1.063					1 1
1,2-Dichlorobenzene	0.718	0.660					
		1				1	
	1	FORM VI	'VOA	1	. —	'1	/87 Rev

				•			
======================================	======	======	======	======	======	======	=====!
Toluene-d8	1.393					1.417	2.8
BFB	0.609	0.642	0.633	0.611	0.668	0.633	3.8
1,2-Dichloroethane-d4	1.539	1.621	1.567	1.579	1.692	1.600	3.7
1						1	

FORM VI VOA

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: REGIONIX EPA Contract: SUPERFUND

Lab Code: FINN Case No.: LV924 SAS No.: ____ SDG No.: 924-01

Instrument ID: FINN Calibration date: 10/09/89 Time: 1032

Lab File ID: C1009 Init. Calib. Date(s): 10/03/89 10/03/89

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

Min RRF50 for SPCC(#)* = 0.300 (0.250 for Bromoform) Max %D for CCC(*) = 25.0%

NA		600	
COMPOUND	RRF	RRF10 BRF50	%D ======
Chloromethane	0.968	1.091	-12.7 #
Bromomethane	2.609	2.744	-5.2
Vinyl Chloride	1.088	1.270	-16.7 *
Chloroethane	1.726	1.834	-6.3
Methylene Chloride	2.012	2.022	
Acetone	0.210	0.193	1
Carbon Disulfide	7.091	7.484	-5.5
1,1-Dichloroethene		3.594	-6.6 *
1,1-Dichloroethane	4.711	4.774	
1,2-Dichloroethene (total)	2.921	3.105	
Chloroform		4.271	1.0 *
1,2-Dichloroethane	1.238	1.205	2.7
1,2-Dibromoethane	0.231	0.230	0.4
1,2-Dibromo-3-Chloropropane	0.029	0.028	3.4
2-Butanone	0.065	0.073	-12.3
1,1,1-Trichloroethane	0.516	0.513	0.6
Carbon Tetrachloride	0.675	0.681	-0.9
Vinyl Acetate	0.190	0.195	-2.6
Bromodichloromethane	0.314	0.277	11.8
1,2-Dichloropropane		0.225	1.3 *
cis-1,3-Dichloropropene	0.271	0.296	
Trichloroethene	0.481	0.488	-1.5
Dibromochloromethane	0.267	0.249	6.7
1,1,2-Trichloroethane	0.135	0.137	-1.5
Benzene	0.810	0.838	-3.5
trans-1,3-Dichloropropene	0.173	0.170	1.7
Bromoform	0.169	0.152	10.1
4-Methyl-2-Pentanone	0.080	0.094	
2-Hexanone	0.074	0.076	-2.7
Tetrachloroethene	0.842	0.845	-0.4
1,1,2,2-Tetrachloroethane	0.195	0.190	2.6
	0.819	0.885	-8.1 *
	1.014	1.029	-1.5 #
	0.550	0.562	-2.2 *
Styrene	0.778	0.772	0.8
Total Xylenes	0.583	0.574	1.5
1,3-Dichlorobenzene	0.653	1	1
1,4-Dichlorobenzene	1.059	1.022	3.5
1,2-Dichlorobenzene	0.626	0.604	3.5
		======= !	===
FORM V	T 7/07	l	I l
roker vi	LT VOA		

8A VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: REGION IX EPA ____ Contract: SUPERFUND

Lab File ID (Standard): C1013A Date Analyzed: 10/13/89

Instrument ID: FINN Time Analyzed: 1018

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(BCM) AREA #	RT	IS2(DFB) AREA #	RT	IS3(CBZ) AREA #	RT
	=======================================	========			=====	========	=====
	12 HOUR STD	46000	7.05	320000	9.14	228000	14.24
	=======================================		=====	========	=====	========	=====
1	UPPER LIMIT	92000		640000		456000	
	=========	========	=====		======		======
	LOWER LIMIT	23000		160000		114000	
	=========	========	=====		=====	========	=====
	EPA SAMPLE						
	NO.						
- 1					=====		=====
01	LV924-07	60000	7.08	320000	9.17	256000	14.24
02	LV924-08	63100	7.07	327000	9.15	270000	14.24
03	LV924-10	53600	7.08	283000	9.15	198000	14.25
04	VBLK3	43600	7.10	302000	9.17	216000	14.25

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

FORM VIIJ VOA

8A VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab Code: FINN __ Case No.: LV924 SAS No.: ___ SDG No.: 924-01

Lab File ID (Standard): C1010 Date Analyzed: 10/10/89

Instrument ID: FINN Time Analyzed: 1336

Matrix:(soil/water) WATER Level:(low/med) LOW Column:(pack/cap) CAP

		IS1(BCM) AREA #	RT	IS2(DFB) AREA #	RT	IS3(CBZ) AREA #	RT
	12 HOUR STD	55200	7.10	346000	9.15	266000	14.25
	UPPER LIMIT	110400		692000		532000	
	LOWER LIMIT	27600		173000		133000	
	EPA SAMPLE NO.						
01 02 03 04 05	LV924-04 LV924-09 LV924-04DS LV924-04MS VBLK2	50200 51000 62800 62300 50300	7.08 7.08 7.10 7.10 7.10	302000 300000 316000 322000 311000	9.15 9.17 9.17 9.19 9.19	225000 218000 250000 250000 232000	14.25 14.25 14.24 14.25 14.25

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

FORM VIII VOA

8A VOLATILE INTERNAL STANDARD AREA SUMMARY

Lab Name: REGION IX EPA Contract: SUPERFUND

Lab File ID (Standard): C1009 Date Analyzed: 10/09/89

Instrument ID: FINN Time Analyzed: 1032

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(BCM) AREA #	RT	IS2(DFB) AREA #	RT	IS3(CBZ) AREA #	RT
	12 HOUR STD	63900	7.07	439000	9.14	322000	14.22
	UPPER LIMIT	127800		878000		644000	
	LOWER LIMIT	31950	======	219500 ======	======	161000 =======	
	EPA SAMPLE NO.						
01 02	LV924-01 LV924-02	50500 53200	7.07	354000 344000	9.15	257000 262000	14.24
03 04 05	LV924-03 LV924-05 LV924-06	55700 56100 55800	7.05 7.07 7.08	318000 310000 307000	9.14 9.15 9.15	245000 245000 232000	14.24 14.24 14.24
06	VBLK1	55100	7.07	383000	. 9.14	271000	14.22

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene

UPPER LIMIT = + 100%

of internal standard area.

LOWER LIMIT = - 50%

of internal standard area.

Column used to flag internal standard area values with an asterisk

page 1 of 1

FORM VIII VOA

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: REGIONIX EPA Contract: SUPERFUND

Instrument ID: FINN Calibration date: 10/10/89 Time: 1336

Lab File ID: C1010____ Init. Calib. Date(s): 10/03/89 10/03/89

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

Min RRF50 for SPCC(#)* = 0.300 (0.250 for Bromoform) Max %D for CCC(*) = 25.0%

Compound Compound RRF RRF50 RR550 R	*ALA	(P))	
Bromomethane	COMPOUND	RRF	RRF50 RRF50	%D
Bromomethane	Chloromethane	0.968	0.830	14.3
Vinyl Chloride				
Chloroethane				
Methylene Chloride 2.012 1.801 10.5 Acetone 0.210 0.180 14.3 Carbon Disulfide 7.091 6.199 12.6 1,1-Dichloroethene * 3.370 3.279 2.7 1,1-Dichloroethane # 4.711 4.494 4.6 1,2-Dichloroethene (total) 2.921 2.636 9.8 Chloroform * 4.316 4.096 5.1 1,2-Dichloroethane 1.238 1.202 2.9 1,2-Dibromoethane 0.231 0.241 -4.3 1,2-Dibromoe-3-Chloropropane 0.029 0.027 6.9 2-Butanone 0.065 0.062 0.65 1.2 Carbon Tetrachloride 0.675 0.586 13.2 Vinyl Acetate 0.190 0.206 -8.4 Bromodichloromethane 0.190 0.206 -8.4 I,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropane * 0.271 0.328 -21.0 Trickloroethane 0.13				
Acetone				
Carbon Disulfide				1 1
1,1-Dichloroethene				1 '
1,1-Dichloroethane				
1,2-Dichloroethene			1	1 .
Chloroform			P .	
1,2-Dichloroethane 1.238 1.202 2.9 1,2-Dibromoethane 0.231 0.241 -4.3 1,2-Dibromo-3-Chloropropane 0.029 0.027 6.9 2-Butanone 0.065 0.062 4.6 1,1-Trichloroethane 0.516 0.510 1.2 Carbon Tetrachloride 0.675 0.586 13.2 Vinyl Acetate 0.190 0.206 -8.4 Bromodichloromethane 0.314 0.353 -12.4 1,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropene 0.271 0.328 -21.0 Trichloroethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.94 -17.5 2-Hexanone 0.074 0.083			3	1
1,2-Dibromoethane			1	J • -
1,2-Dibromo-3-Chloropropane 0.029 0.027 6.9 2-Butanone 0.065 0.062 4.6 1,1,1-Trichloroethane 0.516 0.510 1.2 Carbon Tetrachloride 0.675 0.586 13.2 Vinyl Acetate 0.190 0.206 -8.4 Bromodichloromethane 0.314 0.353 -12.4 1,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropene 0.481 0.466 3.1 Dibromochloromethane 0.481 0.466 3.1 Dibromochloromethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane 0.093 0.217 -11.3 Toluene 0.819 0.8				
2-Butanone			1	1
1,1,1-Trichloroethane			1	
Carbon Tetrachloride 0.675 0.586 13.2 Vinyl Acetate 0.190 0.206 -8.4 Bromodichloromethane 0.314 0.353 -12.4 1,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropene 0.271 0.328 -21.0 Trichloroethene 0.481 0.466 3.1 Dibromochloromethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.653 0.660 -1.1				
Vinyl Acetate 0.190 0.206 -8.4 Bromodichloromethane 0.314 0.353 -12.4 1,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropene 0.481 0.466 3.1 Dibromochloromethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 </td <td></td> <td></td> <td></td> <td></td>				
Bromodichloromethane	Carbon Tetrachioride		1	
1,2-Dichloropropane * 0.228 0.222 2.6 cis-1,3-Dichloropropene 0.271 0.328 -21.0 Trichloroethene 0.481 0.466 3.1 Dibromochloromethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 </td <td></td> <td></td> <td>1</td> <td>1 .</td>			1	1 .
cis-1,3-Dichloropropene 0.271 0.328 -21.0 Trichloroethene 0.481 0.466 3.1 Dibromochloromethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9 <td></td> <td></td> <td></td> <td></td>				
Trichloroethene			1	
Dibromochloromethane 0.267 0.271 -1.5 1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				1
1,1,2-Trichloroethane 0.135 0.154 -14.1 Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				
Benzene 0.810 0.832 -2.7 trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				
trans-1,3-Dichloropropene 0.173 0.194 -12.1 Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				
Bromoform # 0.169 0.158 6.5 4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9			l .	
4-Methyl-2-Pentanone 0.080 0.094 -17.5 2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				
2-Hexanone 0.074 0.083 -12.2 Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9		:		
Tetrachloroethene 0.842 0.822 2.4 1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	4-Methyl-2-Pentanone		1	1
1,1,2,2-Tetrachloroethane # 0.195 0.217 -11.3 Toluene * 0.819 0.858 -4.8 Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9			0.083	1
Toluene				
Chlorobenzene # 1.014 1.000 1.4 Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	1,1,2,2-Tetrachloroethane	0.195	0.217	
Ethylbenzene * 0.550 0.528 4.0 Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	1014616		0.858	
Styrene 0.778 0.763 1.9 Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9				1.4
Total Xylenes 0.583 0.574 1.5 1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	Ethylbenzene	* 0.550	0.528	4.0
1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9		0.778	0.763	1.9
1,3-Dichlorobenzene 0.653 0.660 -1.1 1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	Total Xylenes	0.583		
1,4-Dichlorobenzene 1.059 1.018 3.9 1,2-Dichlorobenzene 0.626 0.638 -1.9	1,3-Dichlorobenzene	0.653	0.660	-1.1
1,2-Dichlorobenzene 0.626 0.638 -1.9		1.059	1.018	3.9
		0.626	0.638	-1.9
		===== 	=======	====== 1
FORM VII VOA	FORM V	I VOA	1	l

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX

215 Fremont Street

HEHORANDUM	San Francisco, Ca. 941	05
DATE:	11/29/89	
SUBJECT:	Request for Unvalidated Data Table	1 and/or Data Validation
FROM:	Dave Bingham, QAMS	Ω
To:	<u>ICF</u>	this copy
•	for Unvalidated Data Table 1 for Data Validation	EPAS copy of Forms
Please retu	rn this form with the completed tas	k.
	EUS-DODGE_Project:	
Lab: Res	Metals: Se, TR Hatrix: W HUM	#: Hemo #: SYL.
Analyses: 1	Metals: Se, TR Matrix: W NUM	ber: <u>//</u>
Date Receive	ed: 11 1 291 89 [] Entered	•
Site ID Number 10 States Sample	ed: 10/5, 10/6/89	
Describe the	e enalyses and list the sample numb $LV924$	ers for this data package: - 15 -> 24
Bckgrd: LV9	4-21 FB, -22 EB (1961), -23 EB 24-18 LU924-15/LU924-16	,-24 FB
Project Off Sampler:	icer:	
Task Comple	ted: / / Transmit Table 1A:	[] Entered
Data Valida Requested:	tion Validation	Days Due
Reviewer/Sta	aff:[] Entered	Task Completed: / /
Completed a	nd Sent to RPM:Late:	[] Entered
Please indi	cate if the laboratory did not comp	ly with the contract and/or if

the SAS request was not adequate:

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	LESC	Contract:	68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

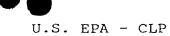
Initial Calibration Source: UNLV, NBS, INT

Continuing Calibration Source: INTERNAL____

Concentration Units: ug/L

									 .
	Initia	al Calibra	ation	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Aluminum_	2000.0	_2146.30	107.3	5000.0	_5083.90	101.7	_4963.10	_99.3	P_
Antimony_	1010.0	1056.40	104.6	5000.0	5034.80	100.7	5106.90	102.1	P_
Arsenic	100.0	106.50	106.5	50.0	52.30	104.6	50.70	101.4	F_
Barium	2010.0	$\overline{1}951.20$	97.1	500.0	502.60	100.5	507.40	101.5	P_
Beryllium	501.0	460.40	91.9	500.0	504.90	101.0	511.90	102.4	P_
Cadmium	492.0	502.90	$\bar{1}02.2$	5000.0			5148.30	103.0	P_
Calcium_	50200.0	49452:40	98.5	25000.0	$\overline{2}4552.70$	98.2	$\overline{2}4371.10$	97.5	P_
Chromium_	503.0	506.80	100.8	5000.0	5058.00	101.2	5162.10	103.2	P
Cobalt	498.0	503.60	101.1	5000.0	5054.00	101.1	_5140.90	102.8	P_
Copper	520.0	525.20	101.0	5000.0	4967.60	99.4	4973.60	_99.5	P_
Iron	2081.0	2053.20	98.7	5000.0	5034.40	$\overline{1}00.7$	_5171.30		P_
Lead	100.0	96.70	96.7	50.0	47.70	95.4	48.50	9.7.0	F_
Magnesium	25700.0	25716.20	$\frac{1}{1}00.1$	25000.0	25028.20	100.1	25070.40	$ \overline{1}00.3 $	P_
Manganese	504.0	534.20	106:0	5000.0	5016.00	100.3	5079.60	101.6	P_
Mercury	3.8	3.30	86.8	5.0	4.73	94.6	4.65	93.0	ΑV
Nickel	485.0	475.60	98.1	5000.0	5042.90	100.9	5119.20	102.4	P_
Potassium	50200.0	51752.00	$\bar{1}03.1$	25000.0	$\overline{2}4442.50$		24354.50	97.4	P_
Selenium_	100.0	101.90	101.9	50.0	46.10	92.2	46.10	92.2	F_
Silver	484.0	463.60	95.8	1000.0	1006.60	100.7	1012.20	$ \overline{1}01.2 $	P_
Sodium	_51500.0	51112.70	_99.2	25000.0	24346.10	97.4	24230.80	96.9	P_
Thallium_	50.0		91.8	25.0	24.90	99.6	24.70	_98.8	F_
Vanadium_	505.0	504.20	_99.8	5000.0	_5035.20	100.7			P_
Zinc	2920.0	_2902.60	_99.4	5000.0	_5089.50	101.8	_5189.00	103.8	P_
Cyanide									NR
									.

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115


2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	LESC	· · · · · · · · · · · · · · · · · · ·	_ ·	Contract:	68-03-3249	9
Lab Code:	LESC	Case No.:	LV924	SAS No.:		SDG No:LV924-15
Initial C	alibration Sour	ce: UN	LV,NBS,IN	VT		
Continuir	g Calibration S	ource: IN	TERNAL			

Concentration Units: ug/L

	·								 .
Analuta		al Calibra			Continuir			%D (1)	м
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	11/1
Aluminum			Γ	5000.0	4949.40	99.0	4933.90	98.7	$ \overline{P} $
Antimony_							5037.30		P-
Arsenic				50.0					F
Barium					505.40				P
Beryllium							510.20		P
Cadmium				5000.0			5104.00		P P
Calcium		•					$\frac{1}{2}$ 4293.10		P
Chromium				5000.0					P
Cobalt				5000.0	_5050.60	101.0	_5068.50		P .
Copper					4964.60				P
Iron					_4937 . 50		4803.00	96.1	P_
Lead				50.0	50.40	100.8	48.60	97.2	F_
Magnesium				25000.0	25010.10	100.0	24943.70	99.8	P_
Manganese				5000.0	4958.50	99.2	4976.50	99.5	P_
Mercury									NR
Nickel				5000.0	5071.10	101.4	_5071.90	101.4	P_
Potassium				25000.0	$\overline{2}4447.40$	97.8	24196.30	_96.8	P_
Selenium_				50.0	45.00	90.0	45.40		F_
Silver				1000.0	998.20	99.8	1002.70	$[\bar{1}00.3]$	P
Sodium				25000.0	24402.40	97.6	$\overline{2}4146.50$	96.6	P_
Thallium_				25.0	24.30	97.2	25.20	100.8	F_
Vanadium_				5000.0	5049.90	101.0	_5070.20	101.4	P_
Zinc				5000.0	5046.30	100.9	_5078.40	101.6	P_
Cyanide					, ,				NR

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

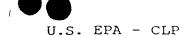
2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

ab Name. DESC	Contract	: 68-03-3249
ab Code: LESC Case N	o.: LV924 SAS No.:	SDG No:LV924-15
nitial Calibration Source:	UNLV, NBS, INT	
ontinuing Calibration Source:	INTERNAL	

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found		True	Continui: Found	ng Cali %R(1)		%R(1)	м
Aluminum				5000.0	4909.90	98.2	5103.40	102 1	P
Antimony				5000.0			_	100.8	- P
Arsenic	100.0	105.70	105.7	50.0	51.00	1	48.80	1 1	F-
Barium		105.70	103.7	500.0					P-
Beryllium				500.0		•		101.1	p-
Cadmium									P-
				5000.0					P-
Calcium		 .			.24493.00			ı —	P-
Chromium_				5000.0					
Cobalt			-	5000.0				100.5	P_
Copper					_4972.30				P
Iron				5000.0	_		_5029.50		P_
Lead	100.0	99.10	_99.1	50.0	50.20		49.80	; ;	F_
Magnesium					25106.60				P_
Manganese				5000.0	_4990.80	_99.8	_4921.80	_98.4	P_
Mercury									NR
Nickel				5000.0			_5056.90		P_
Potassium				_25000.0	24358.50	97.4	24518.30	98.1	P_
Selenium_	100.0	94.80	94.8	50.0	51.70	103.4	48.90		F_
Silver				1000.0	995.70	99.6	999.10	99.9	P
Sodium				25000.0	24219.40		24323.90	97.3	P
Thallium	50.0	49.40	98.8	25.0		ı 	•	-	F
Vanadium -			-	5000.0					P P
Zinc -				5000.0	1	1		1	P
Cyanide					-				NR
]				- ' - '
	I		1	l ————	i	i	l	1	: : l

1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115


2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

ab Name: LESC		Contract:	68-03-3249	
ab Code: LESC Case No	o.: LV924	SAS No.:	s	DG No:LV924-15
nitial Calibration Source:	UNLV, NBS, IN	IT	•	
ontinuing Calibration Source:	INTERNAL_	_		

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)		%R(1)	М
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel_ Potassium Selenium_ Silver_ Sodium_ Thallium_	100.0	98.50		50.0	51.10	102.2	49.70	99.4	NR NR NR NR NR NR NR NR NR NR NR NR NR N
Vanadium_ Zinc Cyanide									NR NR NR

1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2B CRDL STANDARD FOR AA AND ICP

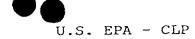
ıb	Name:	LESC	Contract:	68-03-3249

b Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

CRDL Standard Source: INTERNAL____

CP CRDL Standard Source: INTERNAL____

i				1				ŀ			
	CRDL S	Standard fo	or AA	CRDL Standard for ICP Initial Final							
\nalyte	True	Found	%R	True	Found	%R	Found	%R			
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Cron Lead Gagnesium Ganganese Gercury Jickel Cotassium Selenium Silver Codium Challium	True10.0	9.80 9.80 4.40 3.90 9.30	*R98.088.078.093.0		Found	109.8	434.80				
/anadium_ //anc				100.0	102.40 42.90	ì	103.70 43.60	_103.7 _109.0			
				1		l	l	1			



2B CRDL STANDARD FOR AA AND ICP

Lab	Name:	LESC		Contract:		
Lab	Code:	LESC	Case No.: LV924	SAS No.:	SDG	No:LV924-15
AA (CRDL S	tandard Source	: INTERNAL			

ICP CRDL Standard Source: INTERNAL____

	CRDL S	tandard fo	or AA		CRDL Sta	ndard 1	for ICP Fina	1.
Analyte	True	Found	%R	True	Found	%R		
		·			T	T	T	
Aluminum_						ļ		
Antimony_ Arsenic						l		ļ
	10.0	8.80	88.0					l
Barium]		l
Beryllium Cadmium								
Calcium Calcium		 [ŀ
Chromium_								ŀ
Cobalt						I		l
Copper			i					ŀ
Iron								
Lead	5.0	4.90	98.0			1		l
Magnesium						l ———		l
Manganese						·		ľ
Mercury						İ		ŀ
Nickel						l ———		1
Potassium								l
Selenium	5.0	4.70	94.0					
Silver								ı
Sodium								l
Thallium	10.0	9.70	97.0	-				١
Vanadium_								
Zinc								١
								l
	l l			l 1	·	. 1	I	l

2B CRDL STANDARD FOR AA AND ICP

ab Name: LESC		Contract:	68-03-324	19
ab Code: LESC Ca	se No.: LV924	SAS No.:		SDG No:LV924-15
AA CRDL Standard Source:	INTERNAL			
CD CDDI Standard Source.	THURDHAT			

								,
Analyte	CRDL S	Standard fo	or AA %R	True	CRDL Star Initial Found	ndard f %R	for ICP Final Found	%R
Aluminum_								
Antimony_ Arsenic								
Barium								
Beryllium								
Cadmium								
Calcium Chromium_								
Cobalt				ļ				
Copper								
Iron								
Lead								
Magnesium								
Manganese Mercury_								
Nickel								
Potassium								
Selenium_	5.0	4.60	92.0					
Silver Sodium						l		ļ
Thallium								l
Vanadium_								
Zinc								
					l	l		l

3 BLANKS

ab	Name:	LESC		Contract:	68-03-3249	
ab	Code:	LESC	Case No.: LV924	SAS No.:	SDO	G No:LV924-15
rep	aratio	on Blank	Matrix (soil/water): WAT	ER		
rep	aratio	on Blank	Concentration Units (ug/	L or mg/kg): UG/L	

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1		iing Calibr Lank (ug/L) 2		cion 3	С	Prepa- ration Blank C	м
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium	5.2 30.0 2.0 5.0 1.0 5.0 200.0	8 U U U U U U U	57.4 30.0 2.0 5.0 1.0 5.0 200.0	B U U U U U U U	5.0_ 30.0_ 2.0_ 5.0_ 5.0_ 5.0_ 200.0	0 0 0 0 0	12.4 30.0 2.0 5.0 1.0 5.0 200.0	BUUUUUU	5.0 U 30.0 U 2.0 U 5.0 U 1.0 U 5.0 U 200.0 U	P P P P P P P P P P
Chromium_ Cobalt Copper Iron	5.0 10.0 5.0 82.4	U U U B	5.0 10.0 5.0 50.0	U U U	5.0 10.0 5.0 -61.8	U U U B	5.0 10.0 5.1 50.0	U U B U	5.0 U 10.0 U 5.0 U 50.0 U	P P P
Lead Magnesium Manganese Mercury	2.0 200.0 5.0 0.2	น น น	2.0 200.0 5.0 0.2	U U U	2.0 200.0 5.0 0.2	U U U	2.0 200.0 5.8	U U B	2.0 U 200.0 U 5.0 U	F P P AV
Nickel Potassium Selenium_ Silver	30.0 100.0 2.0 5.0	η Ω Ω	30.0 100.0 2.0 5.0	U U U	30.0 100.0 2.0 5.0	U U U U	30.0 — 100.0 — 2.0 — 5.3	U U U B	30.0 U 100.0 U 2.0 U 5.0 U	P P F P
Sodium	100.0 2.0 5.0 5.0	Ω Ω Ω	100.0 2.0 5.0 5.0	U U U	100.0_ 2.0 5.0_ 5.0_	ប ប ប ប	100.0 2.0 5.0 5.0	U U U	100.0 U 2.0 U 5.0 U 5.0 U	P F P NR
		<u>-</u>		_		_				

3 BLANKS

ab	Name:	LESC		Contract:	68-03-3249	€
ab	Code:	LESC	Case No.: LV924	SAS No.:		SDG No:LV924-15
rep	paratio	on Blank Mat	rix (soil/water):			
rep	paratio	on Blank Con	centration Units (ug,	/L or mg/kg):	

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1		ning Calibr Lank (ug/L) 2		cion 3	С	Prepa- ration Blank C	М
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_Manganese_Mercury		ש ש ש	8.2 30.0 2.0 5.0 1.0 5.0 200.0 5.0 5.0 5.0 200.0 5.0		5.0 30.0 5.0 1.0 5.0 200.0 5.0 10.0 5.0 50.0 200.0	טט טטטטטטט טט	89.6 30.0 5.0 1.0 5.0 200.0 5.0 10.0 5.0 50.0 200.0	מטן טטטטטטטט ט מ		P P P P P P P P P P P P P P P P P P P
Nickel Potassium Selenium Silver Sodium Thallium_ Vanadium_ Zinc Cyanide	2.0		30.0 100.0 2.0 5.0 100.0 2.0 5.0 5.0	- ממממממממם	30.0 100.0_ 5.0 5.0 5.0_	ם טטו טטו	30.0 100.0 5.0 100.0 5.0 5.0	ם מו ממו		P P P P NR P

4 ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	LESC	Contract:	68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No: ____ SDG No:LV924-15

ICP ID Number: ARL3560_____ ICS Source: UNLV1287____

		cue		tial Found	i		inal Found	1
.	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Alumirum_	511000	50800.0	480680	482042.8	94.9	475861	_477782.2	_94.1
Antimony_	0	_ 0	40	38.7	_	-1	32.5	
Arsenic								
Barium	0	483	1	481.7	99.7	1	479.6	99.3
Beryllium	0	474	0	426.9	90.1	0	426.3	89.9
Cadmium	0	909	8	947.7	$\overline{1}04.3$	8	953.6	$\overline{1}04.9$
Calcium	476000	470000	427513	429236.4	91.3	425691	425643.9	_90.6
Chromium_	0	513	12	500.8	97.6	8	495.0	96.5
Cobalt	. 0	478	. 7	488.8	102.3	3	482.0	100.8
Copper	. 0	534	. 9	548.8	102.8	8	540.8	101.3
Iron	219000	211000	236830	237563.9	112.6	233967	235269.6	111.5
Lead		_						
Magnesium	513000	513000	521222	522591.8	101.9	519592	521149.4	101.6
Mangarese	0	470	8	508.7	108.2	4	497.6	105.9
Mercury_				 .				
Nickel	0	916	7	898.4	98.1	-10	895.7	97.8
Potassium	0	0	267	279.6	_	278	270.6	_
Selenium_		·						
Silver	0	934	1	980.5	105.0	1	974.9	104.4
Sodium	0	0	127	172.4		148	126.2	l l
Thallium_								
Vanadium_	0	475	-24	473.3	99.6	-26	469.5	98.8
Zinc	0	973		930.7	95.7	-2	922.0	94.8
					l			

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

			LV924-19	S
	 ~~	0040	ſ	

Lab Name: LESC______ Contract: 68-03-3249 |_____

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

Matrix (scil/water): WATER

Level (low/med): _____

Concentration Units (ug/L or mg/kg dry weight): UG/L_

					_				
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_	2281.4000 522.5000 44.0000 2235.1000 51.0000 55.4000 228.4000 278.7000 1224.7000 25.3000 942.6000 0.9900 572.0000 7.1000 14.1000 36.4000 546.3000 595.9000		2.0000 	טטו טטו טפטטט טטו טט	2000.0 500.0 2000.0 50.0 50.0 50.0 250.0 1000.0 24.6 500.0 500.0 500.0 60.0 60.0 60.0 60.0		- - - - - - - - - -	
			_		<u> _</u>			_	

_	$\overline{}$	171	m	0	n	+	c	•

THESE SAMPLES WERE NOT DIGESTED. THE SPIKE WAS ADDED AFTER

__FILTRATION AND BEFORE ANALYSIS._____

6 DUPLICATES

EPA SAMPLE NO.

		LV924-19	D	
Contract:	68-03-3249			

Lab Name: LESC_____ Contract: 68-03-3249

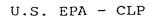
Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

Matrix (soil/water): WATER

Level (low/med): ____

Concentration Units (ug/L or mg/kg dry weight): UG/L_

Analyte Aluminum_ Antimony	Control Limit	122.2000	C B		C B U	RPD0.9_	1	M P
Arsenic	10.0	2.0000	ប	2.0000	U		F	F
Barium	200.0	89.9000	в	89.9000	В	0.0	E	P_
Beryllium	5.0	I	U	1.0000	ט		- E	P_
Cadmium	5.0	5.0000	บ	5.0000	บ			Ρ
Calcium		68347.9000		67905.0000		0.7	[] E	P_
Chromium	10.0	5.0000	บ	5.0000	Ū		- E	Ρ
Cobalt	50.0	10.0000	U	10.0000	U		_ E	P_
Copper	25.0	5.0000	U	5.0000	U		1 — 1 -	P_
Iron	100.0_	84.8000	В	103.0000	_1	19.4_		Ρ_
Lead	5.0	2.0000	U	2.0000	Ū		I	F_
Magnesium	5000.0_	18534.2000		18510.1000	_	0.1_	_ I	₽_
Manganese		420.0000	_	423.3000	_	0.8_	1 — 1 ~	P
Mercury	0.2_		Ū	0.2000	ប			ΑV
Nickel	40.0		U		U			P_
Potassium	5000.0_	6819.8000	_	6769.3000	_	0.7		P_
Selenium_	5.0_		บ	2.0000	Ū		-	F_
Silver	10.0	5.0000	U	5.0000	U		_ 1	P_
Sodium		34500.2000	_	34192.7000	_	0.9		P_
Thallium_	10.0_	2.0000	Ū	2.0000	บิ		1 1 — 1 1	F_
Vanadium_	50.0	5.0000	U	5.0000	U		_ 1	P_
Zinc	20.0_	39.2000	_	38.1000		2.8	11-11	P
Cyanide			_				_ 1	NR
			_		_		_ .	



8 STANDARD ADDITION RESULTS

Lab	Name:	LESC	Contract:	68-03-3249
			>	

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

,	· · · · · · · · · · · · · · · · · · ·											 1
EPA Sample No.	An	Dil.	0 ADD Abs	CON	1 ADD N ABS	CON	2 ADD ABS	CON	B ADD ABS	Final Conc.	r	Q
V924-22	SE	1	11.200	18	23.800	36	36.900	54	48.400	16.4	0.9997	-
												
												_
	 											_
												-
												-
												_
												_
	<u> </u>	<u> </u>					·					-
		·			<u> </u>			<u></u>				-
<u> </u>						l						-
						<u> </u>						-
		<u> </u>										
												_
					· · · · · · · · · · · · · · · · · · ·							-
												÷
			•			<u> </u>						-
												1_
												_
											ļ	-
l	l	1	l	l	l	l	l <u></u>	1	l	l	l	1_

ICP SERIAL DILUTION

EPA SAMPLE NO.

LV924-16

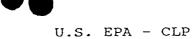
Lab Name: LESC_____ Contract: 68-03-3249

Lab Code: LESC__ Case No.: LV924 SAS No.: ____ SDG No:LV924-15

Matrix (soil/water): WATER

Level (low/med): ____

	Initial Sample		Serial	- 1	8	1	
			Dilution	- 1	Differ-	1	
	Result (I)	c	Result (S)	c	ence	0	м
Analyte	Result (1)	4	Result (3)	~	ence	12	
Aluminum	135.90	В	157.50	TB	15.9	-	${P}$
Antimony	30.00	וט	150.00	U		-	NR
Arsenic -		١	130.00			1-	F
Barium -	05 40	B	86.00	$\frac{1}{B}$	0.7	-	P-
	85.40		· · · · · · · · · · · · · · · · · · ·	U		1-	NR
Beryllium	1.00_	U	5.00_	. ~			NR
Cadmium _	5.00_	U	25.00_	U		_	P
Calcium	76576.50	_	76716.50	1=1	0.2_	_	NR
Chromium	5.00	U	25.00_	Ū		-	l 1
Cobalt	10.00	U	50.00_	U		-	NR
Copper	5.00	U	25.00	ַע		_	NR
[ron	50.00	U	250.00_	U		_	NR
Lead		<u> </u>	·	. _	11	1_	F
Magnesium _	21105.20	l_I	20761.00_	B	1.6_	1_	P_
Manganese _	127:90		133.00	. _	4.0_	1_	P_
Mercury		1-1			1	1_	ΑV
Nickel	30.00	ប	150.00	Ū			NR
Potassium	3914.50	В	3697.00	В	5.6		P_
Selenium							F_
Silver	5.00	ប	25.00	ט			NR
Sodium	18549.40	1 1	17833,00.	В	3.9	-	P
Thallium		-		1	-	-	F
Vanadium	5.00	Ū	25.00			-	NR
Zinc	5.00	U	25.00	וטו־		-	NR
				- -		-	



10 HOLDING TIMES

ab	Name:	LESC		Contract:	68-03-3249
ab	Code:	LESC	Case No.: LV924	SAS No.:	SDG No:LV924-15

1						1	T
EPA		Date		Mercury Prep	Mercury Holding	Cyanide Prep	Cyanide Holding
Sample No.	Matrix	Received	П	Date	Time	Date	Time
			۱۱				
LV924-15	_WATER_	10/07/99	П	10/27/89	20		
LV924-16	WATER	10/07/89	П	10/27/89	20		
LV924-17	WATER	10/07/89		10/27/89	20		
LV924-18	WATER	10/07/89		10/27/89	20		
LV924-19	WATER	10/07/89	Н	10/27/89	20		
LV92419 D	WATER	10/07/89		10/27/89	20		
LV92419_S_	WATER	10/07/89		10/27/89	20		
LV924-20	WATER	10/07/89		10/27/89	20		
LV924-21	WATER	10/07/89	П	10/27/89	20		
LV924-22	WATER	10/07/89	11	10/27/89	20		
LV924-22	WATER	10/12/89	П	10/27/89	15 .		
LV924-23	WATER	10/12/89	П	10/27/89	15		
LV924-24	WATER	10/12/89		10/27/89	15		·
_				· ·			
			11				
			П				
			$\ \ $			•	
			1				
-			П				
			П				

11 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: LESC		Contract:	68-03-324	19
Lab Code: LESC	Case No.: LV924	SAS No.:		SDG No:LV924-15
ICP ID Number:		Date:	11/30/89	
Flame AA ID Number :	FIAAV			

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Aluminum_ Antimony_			200_ 60		NR NR
Arsenic Barium	_193.78	BZ	10_ 200_	2.0	F NR
Beryllium Cadmium Calcium			55_ 55_		NR NR NR
Chromium_ Cobalt			10 50		NR NR
Copper Iron Lead	283.38	 	25_ 100_ 5	2.0	NR NR F
Magnesium Manganese			5000_ 15_		NR NR
Mercury Nickel_ Potassium	_253.78		0.2 40 5000	0.2	AV NR NR
Selenium_ Silver	_196.08	BZ	55_ 10_	2.0	F_ NR
Sodium Thallium_ Vanadium	_276.88	BZ	5000_ 10_ 50	2.0	NR F NR
Zinc			20_		NR

Comments:			
	·	 	

Furnace AA ID Number : PE5000_____

11 INSTRUMENT DETECTION LIMITS (QUARTERLY)

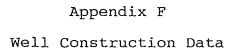
Lab Name: LESC		Contract:	68-03-3249		
Lab Code: LESC	Case No.: LV924	SAS No.:	SDG No:LV924-15		
ICP ID Number:	ARL3560	Date:	11/30/89		
Flame AA ID Number :					
Furnace AA TO Number .					

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Miaryce .	(11111)	ground	(ug/ b)	(49/11)	11
Aluminum	396.15		200	5.0	$\overline{\mathbf{p}}$
Antimony -	217.59		60	30.0	$_{\rm P}^{-}$
Arsenic			10		NR
Barium -	455.40		200	5.0	P
Beryllium	313.11		5	1.0	P_
Cadmium	226.50		5	5.0	P
Calcium	422.67		5000	200.0	P_
Chromium	267.72		10	5.0	P_
Cobalt	_228.62		50	10.0	P_
Copper	324.75		25	5.0	P_
Iron.	247.29		100	50.0	P_
Lead	_		5		NR
Magnesium	_279.55		5000_	200.0	P_
Manganese	_257.61		15	5.0	P_
Mercury_			0.2_		NR
Nickel	_231.60		40_	30.0	P_
Potassium	_766.49		5000_	100.0	P_
Selenium_		l	5		NR
Silver	_328.07	l	10_	5.0	P_
Sodium	_589.59		5000_	100.0	P_
Thallium_			10_		NR
Vanadium_	_292.40		50_	5.0	$ P_{\perp} $
Zinc	_213.86	l	20_	5.0	P_
	l	l			I l

Comments:				
	 	 	 	

12A ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY)

ab Name: L		Como No		CAC No .		CDC.	No:LV924-15
ab Code: L	E2C	Case No.:	LV924	SAS No.:		SUG	NO.LV924-15
CP ID Numb	er: ARL3560	0		Date:	11/30/89		
	Wave-	Tot	ovelement.	Correction	n Factors	for	
Analyte	length (nm)	Al	Ca	Fe	Mg	TOL	
Aluminum_ Antimony_ Arsenic Barium	396.15 217.59 455.40						
Beryllium Cadmium Calcium Chromium	313.11_ _226.50_ _422.67_ _267.72			0.00036	00		
Cobalt Copper Iron Lead Magnesium	228.62_ _324.75_ _247.29_ _220.35_ _279.55						
Manganese Mercury Nickel	_257.61_ 231.60			_0.00006	76		
Potassium Selenium_ Silver Sodium	_766.49 						
Thallium_ Vanadium_ Zinc					78		
•		(
Comments:							



13 ICP LINEAR RANGES (QUARTERLY)

ab	b Name: LESC		Contract: 68-03-3249		
ab	Code:	LESC	Case No.: LV924	SAS No.:	SDG No:LV924-15
CP	ID Nur	mber: ARL3560_		Date:	11/30/89

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Aluminum	10.00	100.0	
Antimony -	10.00	100.0	
Arsenic			NR
Barium -	10.00	100.0	
Beryllium	10.00	100.0	
Cadmium	10.00	100.0	
Calcium	10.00	100.0	
Chromium_	10.00	100.0	
Cobalt	10.00	100.0	
Copper	10.00	100.0	<u>-</u>
Iron	10.00	100.0	
Lead	10.00	100.0	.
Magnesium	10.00	100.0	.
Manganese	10.00	100.0	.
Mercury			NR
Nickel	10.00	100.0	.]
Potassium	10.00	100.0_	.
Selenium_			NR
Silver	10.00) 	.
Sodium	10.00	100.0	.
Thallium_			. NR
Vanadium_	10.00	100.0	.
Zinc	10.00	100.0	.
			.

Com	ments:			
,		 		
•		 		

Location of Registered Domestic Wells within a Three Mile Radius of PDHS Source: ADWR Data Base

WELL LCCATION	OWNER	ADDRESS (Bisbee)	WELL DEPTH	CSG DIAMETER
(D-23-24)5cbb	RW White	Box 445	22	
(D-23-24)5cbb	RW White	Box 445	30	6
(D-23-24)5cc1	DF Bateman	Box DG	40	24
(D-23-24)5cc2	DF Bateman Jr.	Box DG	45	30
(D-23-24)5cc3	RN McGinnis	Box 364	60	
(D-23-24)5cdb	W Goren	110 E. Locklin Ave		12
(D-23-2:4)5dd	KE Tighe	Box 956	35	60
(D-23-2:4)6b	TH Eade	Parksburg, W.Va.	160	10
(D-23-2:4)6b2	TH Eade	Parksburg, W.Va.	50	10
(D-23-24)6cb1	CT Cleveland	Clinton, Ia	150	
(D-23-24)7	TC Hargis	Box 1638	63	
(D-23-24)7	EL Smith	Box 1306	45	
(D-23-24)7	EL Smith	Box 1306	40	
(D-23-24)7aa	JW Horstman	Box 1179	109	6
(D-23-24)7aa	JL Krause	Box 735	50	16
(D-23-24)7aa	JL Krause	Box 735	45	12
(D-23-24)7aaa	R Lopez	Box 758	40	48
(D-23-24)7abb	R Lopez L Saner DD Crowley	Box 326	150	6 6
(D-23-24)7abb	DD Crowley	207 Bornite	150	6
(D-23-24)8	M Aiva	Box 316	28	
(D-23-24)8ac(bda)	M Edwards	635 Tombstone Cnyn	25(50)	(24)
(D-23-24)8ba	CL Baugh	box 295	30	24
(D-23-24)8ba	WG Henwood	702 Tombstone Cnyn	60	
(D-23-24)8ba	JE Siems R Bamrick	Box 12		
(D-23-24)8ba	R Bamrick	Box 112	51	
(D-23-24)8baa	LF Tschirhart	Box 1552	30	4
(D-23-24)8bad	AJ Kent	Box 141	50	
(D-23-24)8bb	D Hogan	Box 823	79	16
(D-23-24)8bb	F Keough	Box 512	30	36
(D-23-24)8bb	RL Haynes	Box 1533 942 W.Blvd	60	
(D-23-24)8bbb	RD Wrye	942 W.Blvd	35	. 36
(D-23-24)8bbb	DW Danforth	1002 W.Blvd		48
(D-23-24)8bda	W Goren	Box 812	50	
(D-23-24)8bda	RA Thursby FM Dugie	639a Tombstone Cnyn	50	24
(D-23-24)8bdb				w va
(D-23-24)8d	Roman Catholic Church	Drawer SP	42	6
(D-23-24)8dba	CS McCulloch	Box 1882	41	34
(D-23-24)8dba	CR Dilley	Tempe, Az 85282	au 410	